Tpc-setka.ru

ТПЦ Сетка
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Железосодержащие добавки для цемента

Расширяющие добавки для повышения долговечности конструкций

Хотите получать свежие статьи на свою почту?

Все свежие статьи публикуются в электронном журнале ВесьБетон.

Подписка на журнал бесплатная, процедура подписки занимает одну минуту! Подписаться!

Журнал «ВесьБетон»— всегда свежая и профессиональнаяматериалов, добавках, оборудовании и многом другом.

Особенности журнала ВесьБетон:

  1. Публикуются статьи и книги о производстве и применении строительных материалов, добавок.
  2. Тираж более 10 500 профессиональных строителей.
  3. Подписаны только строители, технологи и производители, так как публикуется только профессиональная информация.
  4. Выходит 2 раза в месяц.
  5. Честный тираж! Журнал распространяется через независимый канал Subscribe.ru
  6. Обсуждение статей на форумах

Подписаться (бесплатно)!

Большое разнообразие строительных сооружений, различие условий их возведения и эксплуатации, а также необходимость повышения долговечности этих сооружений сделали актуальной проблему создания специальных вяжущих и бетонов на их основе.

В 70-х годах XX века в НИИЖБ разработаны напрягающие бетоны и бетоны с компенсированной усадкой, обеспечивающие конструкциям на их основе повышенную водонепроницаемость, морозо- и трещиностойкость, для применения в различных областях строительства. Такие бетоны создаются на основе портландцемента (ПЦ) и расширяющих добавок (РД), которые могут быть получены как по обжиговой, так и по безобжиговой технологии с применением различных отходов промышленных производств. Среди многочисленных запатентованных в России добавок особый интерес представляют алюминатно-сульфатные и алюмооксидные добавки, а также разные их комбинации, свойства которых определяются условиями гидратации и твердения алюминатов и сульфоалюминатов кальция, а также их соединений с силикатами и сульфатами.

В качестве сырья для получения таких добавок могут быть использованы природные материалы и промышленные отходы. Особый интерес представляет утилизация крупнотоннажных отходов, которая позволяет решать проблемы охраны окружающей среды и ресурсосбережения в строительстве.

Эти добавки вводят в мельницу при производстве цементов или в бетоносмеситель при приготовлении бетонной смеси.

Введение расширяющей добавки в процессе приготовления бетонной смеси регулирует энергию расширения вяжущего, что позволяет получать бетоны для сборного и монолитного строительства, как с компенсированной усадкой, так и напрягающие с различной энергией самонапряжения, обеспечивая высокое качество изделий.

Как известно [см. Кузнецова Т.В. Алюминатные и сульфоалюминатные цементы. М.: Стройиздат, 1986], в основе расширения бетонов с использованием РД лежит то же явление, что и при коррозии III вида [см. Москвин В.М. Коррозия бетона. М.: Госстройиздат, 1952; Михайлов В.В., Рубецкая Т.В., Титова Л.А. К вопросу о сульфатостойкости бетона на напрягающем цементе // Бетон и железобетон. 1974, № 3], т.е. наличие растягивающих усилий, возникающих в порах бетона в результате увеличения объема кристаллизующихся солей или замерзания воды.

При этом явления, которые происходят во время сульфатной коррозии, аналогичны процессам расширения взаимодействия алюмо- и сульфатсодержащих материалов, т.е. образованию гидросульфоалюмината кальция (ГСАК) в первые сутки параллельно с гидратацией. В этот период структура бетона склонна к пластическим деформациям, и образование ГСАК не приводит к ее разрушению.

Следует отметить, что при применении напрягающих бетонов или бетонов с компенсированной усадкой в конструкциях необходимое ограничение деформации расширения бетонов достигается путем использования арматуры или торцевого ограничения. При этом возникающие растягивающие усилия от образования ГСАК не только не опасны, но и способствуют созданию плотной и прочной структуры за счет обжатия бетона. Кроме того, кристаллы ГСАК в порах и на поверхности новообразований как бы дисперсно армируют цементный камень. Для оценки связывания основных компонентов ГСАК были проведены комплексные физико-химические исследования кинетики процессов гидратации различных вяжущих, результаты которых приведены в таблице 1.

Таблица 1 Кинетика связывания воды, SO3 и кристаллизации эттрингита

Вяжущее в бетоне

Содержание связанной воды, %

Содержание несвязанного SO3 (непрокаленное вещество), %

Из данных таблицы 1 видно, что в бетонах на основе ПЦ и РД сразу после затворения их водой на поверхности цементных частиц образуются гелеобразные продукты гидратации, и уже в первые часы появляются крупные кристаллические новообразования ГСАК игольчатой формы, которые, переплетаясь, дополнительно связывают между собой частицы цемента.

Содержание соли (эттрингита), как в возрасте 1 суток, так и 28, в составах на основе ПЦ и РД в 2 с лишним раза больше, чем у аналогичных бетонов на ПЦ, в то время как гипс практически весь связывается уже к 7 суткам. Все это создает необходимые условия для получения прочной и плотной структуры бетона.

При длительном агрессивном воздействии внешней среды за счет оставшихся алюминатов может образоваться некоторое количество кристаллизующихся солей (эттрингит, хлоралюминат и др.). Это, в свою очередь, является дополнительным источником расширения бетона и в условиях ограничения деформаций (даже в уже сформировавшейся структуре материала) не представляет опасности, вызывая лишь дополнительное напряжение в арматуре [см. Михайлов В.В., Рубецкая Т.В., Титова Л.А. К вопросу о сульфатостойкости бетона на напрягающем цементе // Бетон и железобетон. 1974, № 3]. Благодаря повышенному дополнительному армированию цементного камня кристаллизующимися солями при введении расширяющих добавок изменяется пористость и повышается плотность бетона.

Читайте так же:
Распломбирование корневых каналов с цементом

Стойкость бетона на многокомпонентном вяжущем (ПЦ + РД) в значительной степени определяется его водонепроницаемостью и морозостойкостью.

Таблица 2 Эксплуатационные характеристики бетонов с компенсированной усадкой

Морозо-стойкость (число циклов)

Прочность, кгс/м2 (сжатие / изгиб)

Марка по водо-непроницаемости W

485 / 68,7
698 / 89,7

С компенсированной усадкой

Как видно из таблицы 2, применение в составе бетона вяжущего на основе ПЦ и РД позволяет улучшить эксплуатационные характеристики бетонов. При одном и том же расходе вяжущего введение расширяющих добавок в состав бетона значительно увеличивает прочность, как при сжатии, так и при изгибе, а также повышает морозостойкость и водонепроницаемость.

Такие свойства многокомпонентного вяжущего, как плотная структура и непроницаемость бетонов на его основе, а также трещиностойкость самонапряженного железобетона в сочетании с высокими прочностными показателями, особенно при воздействии изгибающих и растягивающих усилий, обусловливают эффективность применения вяжущего в бетонах разнообразных конструкций (бесшовных полах промышленных зданий, емкостях различного назначения, спортивных сооружениях и т.п.).

Покрытия полов промзданий, спортивных и других сооружений, представляющие собой относительно тонкий слой, выполняются либо по бетонному основанию на грунте, либо по железобетонному перекрытию.

Помимо специальных требований по стойкости к износу, ударным и агрессивным воздействиям, электризации, беспыльности и т.п., к бетонным полам предъявляются требования по трещиностойкости и водонепроницаемости.

Трещиностойкость бетонных покрытий при воздействии усадочных температурных факторов и внешней нагрузки определяется жесткостью основания, сцеплением с ним и в основном его деформативностью без образования трещин.

Небольшая предельная растяжимость обычного бетона вызывает необходимость устройства деформационных швов в бетонных покрытиях с определенным шагом в зависимости от возможных температурных и влажностных перепадов. Специальная изоляция в виде ковра из рулонных материалов (или иным способом) обеспечивает водонепроницаемость бетонных полов. При введении полимерных и других добавок улучшаются ударная вязкость и водонепроницаемость бетона в полах, что, однако, отрицательно сказывается на других показателях.

Повысить трещиностойкость и обеспечить водонепроницаемость покрытий полов можно путем использования бетонов с компенсированной усадкой или напрягающих. Трещиностойкость покрытия обусловливается преднапряжением, которое достигается как в полностью бетонном с компенсированной усадкой покрытии, так и в бетонном, ограниченном по периметру обвязкой, воспринимающей расширение покрытия.

Преднапряжение может быть рассчитано в зависимости от активности РД, состава бетона, степени и характера армирования либо упругой податливости обвязки.

Наиболее эффективным является применение таких бетонов для полов промзданий и гаражей без оклеечной гидроизоляции, что позволяет получить бесшовную конструкцию пола, исключив основную долю усадки в период расширения и связанных с этим растягивающих напряжений. Кроме того, при наличии арматуры РД создает самонапряжение конструкции, а также имеет более высокую прочность на растяжение при изгибе, позволяющую дополнительно уменьшить сечение конструкции пола (особенно при совмещении покрытия с подстилающим слоем).

В 1992 году на мясокомбинате «КампоМос» были возведены 2000 м2 декоративного покрытия пола, которые эксплуатируются уже более 10 лет без капитального ремонта. Необходимо отметить, что в цехах мясомолочной промышленности бетонные полы находятся в специфических условиях: на них систематически попадают компоненты, агрессивные к бетону. Поэтому для обеспечения долговечности покрытий при их устройстве обычно в бетон вводят биоцидные добавки. Введение одной только комплексной расширяющей добавки (без биодобавок) позволяет получить конструкцию требуемой долговечности.

Проведенные исследования и опыт эксплуатации полов в цехах изготовления мясопродуктов, убойных цехах и холодильниках позволяют рекомендовать бетоны с компенсированной усадкой на портландцементе с расширяющей добавкой для массового применения.

В настоящее время возведено более 20 000 м2 покрытий полов на мясоперерабатывающих комбинатах Москвы: «КампоМос», «Микомс», «Лианозово», «Велком» и др.

В НИИЖБ разработана техническая документация на расширяющую добавку, напрягающий цемент и бетоны, напрягающие и с компенсированной усадкой. По требованию заинтересованных организаций разрабатываются рекомендации по применению таких бетонов для каждого конкретного случая, и поставляется необходимое количество добавки.

Добавки для бетонов и растворов. Кольматирующие добавки

Кольматирующие добавки — это вещества, способствующие заполнению пор в бетоне водонерастворимыми продуктами. По требованиям надежности они должны обеспечивать повышение марки бетона по водонепроницаемости на 2 ступени и более.

Основное назначение кольматирующих (уплотняющих) добавок связано с увеличением плотности бетона и раствора, что способствует повышению их долговечности, особенно в тех случаях, когда агрессивными факторами являются органические или неорганические жидкие или газообразные среды.

В качестве кольматирующих добавок для бетонов и строительных растворов используют тонкодисперсные минеральные вещества, обладающие гидравлической или пуццоланической активностью, а также водорастворимые добавки. Механизм действия активных минеральных добавок-наполнителей подробно изложен в разделе «Минеральные добавки».

Водорастворимыми кольматирующими добавками (добавками-уплотнителями) являются водорастворимые смолы и соли алюминия, железа и кальция, характеристики которых представлены ниже.

Читайте так же:
Как приготовить цемент самому

Диэтиленгликолевая смола ДЭГ-1. Однородная жидкость желтого цвета; плотность — 1,115 г/см3, молекулярная масса — 240. 260. Содержание эпоксидных групп более 25 %, гидроксильных — 4,5 %. Рекомендуемая дозировка — 1,0. 1,5 %.

Триэтиленгликолевая смола ТЭГ-1. Алифатическая эпоксидная смола в виде однородной жидкости желтого цвета плотностью 1,155 г/см3, молекулярная масса 300. 320. Рекомендуемая дозировка — 1,0. 1,5 %.

Полиаминная смола С-89. Прозрачная темная однородная жидкость с зеленоватым отливом. Концентрация смолы в водном растворе 29,45 %. Устойчива к разведению водой при соотношении 1:100. Не рекомендуется использовать сланцевый цемент. Рекомендуемая дозировка

Битумная эмульсия (эмульбит) БЭ. Эмульсия 1 рода, состоящая из битума (50 %), добавки ЛСТ (5 %) и воды (45 %). Рекомендуемая дозировка — 5. 10 % эмульсии от массы цемента.

Сульфат железа СЖ. Вещество желтого цвета в виде кристаллогидрата Fe2(SO4)3 · 9H2O, хорошо растворимое в воде. Дозировка добавки не должна превышать3%.

Хлорид железа ХЖ. Продукт состава FeCl3 • 6H2O, красно-коричневого цвета, хорошо растворимый в воде, сильно гигроскопичен. Количество добавки должно быть менее 3 % — для бетона неармированных конструкций, и менее 2 % — для бетона армированных конструкций.

Нитрат железа НЖ. Вещество бледно-фиолетового цвета состава Fe(NO3)3• 9Н2O. Продукт хорошо растворим в воде. Дозировка не должна превышать 3 %.

Нитрат кальция НК. Выпускается в виде кристаллов Са(NO3)2 или тетрагидрата Са(NO3)2 • 4H2O. Продукт бесцветный, хорошо растворим в воде. Дозировка не должна превышать 3 %.

Сульфат алюминия СА. Бесцветные кристаллы, хорошо растворимые в воде. Производится в виде гидрата Al2(SO4)3 • 18H2O и в безводном виде: Кристаллогидрат легко выветривается при хранении на воздухе. Дозировка не должна превышать 3 %.

Уплотнители бетона — водорастворимые смолы ДЭГ-1, ТЭГ-1, С-89 улучшают однородность бетона и, смещая кривую распределения капилляров и пор в области меньших размеров, повышают деформативность и предельную растяжимость бетона, а также способствуют образованию в нем более плотной контактной зоны. Результатом такого действия является повышение долговечности бетонных и железобетонных изделий.

Добавки СЖ, ХЖ, НЖ, являясь добавками второго класса, т. е. вступающими в химические реакции с вяжущими материалами, ускоряют схватывание цемента и улучшают структурные характеристики и морозостойкость бетона. Это обусловлено тем, что в результате реакций, протекающих между ними и составляющими цемента и продуктами их гидратации, образуются трудно растворимые вещества, уплотняющие цементный камень.

Например, при введении СЖ (Fe2(SO4)3) в результате обменных реакций между химически активными алюминий — и железосодержащими фазами клинкерного цемента образуются трудно растворимые двойные соли-гидраты типа;

3CaO • Fe2O3 • 6H2O; 3CaO • Fe2O3 • 3CaSO4 • 31H2O; 3CaO • Al2O3 • Fe2O3 • 3CaSO4 • 31H2O.

В результате возникновения высокодисперсных эластичных труднорастворимых железосодержащих новообразований происходит кольматация пор цементного камня, что способствует повышению непроницаемости бетона, а, следовательно, и его долговечности.

Формы железа в биологически активных добавках.

Железо – очень важный минерал, который необходим человеку в небольшом количестве. Он широко распространен в продуктах питания, включая такие продукты, как мясо, птица и рыба, а также сушеные фрукты, зерновые и зеленые овощи. Железо из растительных продуктов усваивается в два раза тяжелее, чем из продуктов животного происхождения. Среднее количество необходимого железа составляет от 10 до 20 мг в день.

Для чего нам необходимо железо?

Оно необходимо для производства гемоглобина, который позволяет красным клеткам передавать кислород тканям. Тяжелый или длительный дефицит железа – это главная причина анемии, которая, согласно мировой статистике, поражает приблизительно пять процентов женщин и два процента мужчин. Симптомы железодефицитной анемии включают легкую утомляемость, одышку при умеренных упражнениях и вялость.

Что же делать, если была диагностирована анемия?

Чаще всего врач прописывает соблюдение диеты и прием железосодержащих препаратов.

Но современный рынок просто изобилует различными средствами для профилактики и лечения железодефицитной анемии. На каком препарате остановиться?

Начнем с того, что есть лекарственные средства, содержащие терапевтические дозы железа. А есть биологически активные добавки, количество железа в которых определяется профилактической дозой.

В любом случае только врач может определять дозировку и длительность приема железосодержащих препаратов, основываясь на анализах крови и других лабораторных исследованиях.

В этой статье рассмотрим железосодежащие биологически активные добавки к пище.

В добавках используется несколько форм железа. Фактическое количество применимого «элементного» железа на железосодержащий компонент варьируется в зависимости от формы. Например, железо — это 20% сульфата железа и только 12% глюконата железа. Если говорить иначе, для получения 50 мг железа Вы могли бы принять приблизительно 250 мг сульфата железа или около 417 мг глюконата железа. К счастью, потребителю не нужно делать вычисления, это делает изготовитель. Применяемое количество или железо (элементное железо) – это то, что указано в Информации по добавкам на этикетке.

Читайте так же:
Назначение цемента всех марок

Обычно наименее дорогие формы железа — железа сульфат, железа фумарат и железа глюконат. Если Вы испытываете затруднения при приеме этих форм железа из-за желудочно-кишечного дискомфорта, рассмотрите формы в виде железа бисглицинат, железа глицинат или аминокислотное соединение железа. (Одно исследование показало, что железа бисглицинат (также известный как бисглицинат железа или Ferrochel) усваивается в два — четыре раза лучше, чем железа сульфат, при приеме с едой (Layrisse, J Nutr 2000), хотя это усвоение проходит хуже, чем железа аскорбат при приеме только с водой (Olivares, Arch Latinoam Nutr 2001). Железосодержащие добавки с медленным высвобождением могут также уменьшить желудочно-кишечный дискомфорт, но есть некоторое сомнение, что они уменьшают усвоение железа.

Некоторые добавки содержат полипептиды их гемового железа или HIP, которое лучше усваивается, чем соли железа, такие как железа сульфат. Это было показано в исследовании, при котором и полипептиды HIP, и железа сульфат употреблялись во время завтрака. Предварительные данные свидетельствуют о том, что полипептиды HIP могут быть перенесены лучше, чем железа сульфат (Seligman, Nutrition Research 2000).

Железа протеин сукцинилат является типом железа, связанным с белком, который растворяется в кишечнике (где усваивается железо), но не растворяется в желудке, и, как выявлено, вызывает меньше раздражения желудка и при длительном сроке показывает лучшее содержание железа в организме, чем сульфат железа (Liquori, Интервал J Pharmacol Там Toxicol 1993).

Другая форма, карбонильное железо, представляет пониженный вред при случайной передозировке. Таким образом, карбонильное железо является компонентом, который содержится во многих добавках для детей, и родители малышей предпочитают именно эти добавки. Однако карбонильное железо требует соответствующей кислоты желудочного сока для усвоения. Поэтому его необходимо принимать во время еды и нельзя использовать с лекарствами, которые уменьшают кислоту желудочного сока.

Прием железосодержащих добавок во время еды может также помочь избежать желудочного расстройства. Хотя объединение добавки с едой может уменьшить усвоение железа, прием еды с продуктами, богатыми витамином C может восстановить этот эффект, так как витамин C повышает усвоение железа. Действительно некоторые железосодержащие добавки содержат витамин C как добавочный компонент для содействия усвоению.

Помните, что антацидные средства могут уменьшить усвоение железа, как, например, соевый белок, кофе, чай, яйца, цельнозерновые злаки, хлеб и шпинат. Усвоение железа также может быть уменьшено за счет больших доз кальция, цинка, марганца, магния или меди. При приеме одного из этих продуктов или высокодозированных минеральных добавок, подождите 1 — 2 часа до приема железосодержащих добавок.

Большим и существенным преимуществом карбонильного железа является практически полное отсутствие побочных эффектов, появляющихся при приеме обычного неорганического железа.

Тошнота, рвота, головные боли, головокружение, общее недомогание — это лишь малая часть побочных действий, которые очень трудно переносить.

Часто возникает очень неприятный «железный» привкус, который может стать одной из причин отказа от железосодержащей добавки.

Карбонильное железо входит в состав препарата BoostIron™ (БустАйрон) и представляет собой 98% элементарного железа!

Для повышения его усвояемости в желудочно-кишечном тракте, в состав препарата добавлены витамин С, В12 и фолиевая кислота.

Само железо практически полностью усваивается организмом, не обладает токсичностью и не вызывает проблем кишечника, такие как запоры и диарея.

BoostIron™ рекомендован женщинам в период беременности для профилактики и комплексного лечения железодефицитной анемии, что еще раз говорит о его безопасности и эффективности.

Лигносульфонаты для цемента и бетона — достижения и перспективы

В статье описывается 70-летний отечественный опыт эффективного применения многотоннажных отходов производств — лигносульфонатов ЦБК, металлургии, химических, пищевых предприятий — с получением универсальной химической добавки, регулирующей и управляющей свойствами всех вяжущих. В ХХI веке Россия может стать изготовителем нано-суперпластификаторов из отечественных лигносульфонатов для всего мира.

Вспомним отечественную историю развития строительства и химии. Первый цементный завод (Щуровский) был запущен в 1920 году знаменитым впоследствии д.т.н. В. Н. Юнгом (1883-1955), заведующим кафедрой Менделеевского института, потом В. Н. Юнг создавал новые виды цементов, за плодотворную работу правительство неоднократно награждало учёного.

Годы первых Пятилеток (1928-1940) высоко подняли строительную и химическую науки России, вначале были созданы новейшие центры науки: НИИЖБ Госстроя СССР и ГИАП Минхимпрома СССР. Автор данной статьи работал в этих огромных научно-производственных НПО — кластерах, включавших тысячи учёных и производственников, и заводы, производящие оборудование и достаточное количество необходимых материалов и изделий, например: Днепродзержинский, Кемеровский, Новомосковский, Воскресенский, Новгородский, Чирчикский комбинаты, комплекс Уральских заводов — первенцы советской индустриализации 1928-1930-х годов, которые в период Великой Отечественной войны обеспечивали страну всем необходимым.

В СССР были построены химические комбинаты значительно большей мощности и производительности чем в Германии. Например знаменитый Bayer около города Köln имеет один филиал Leverkusen, другой Dormagen, производящие в настоящее время силиконы, лекарства, удобрения, пестициды, пластмассы, смолы, краски. Но заводы в Германии в несколько раз меньше по объёмам производства, чем любой из перечисленных выше химкомбинатов в СССР. В Кёльне есть и другие компактные химические заводы: Höchst GmbH, Wacker Chemie AG, Carbosulf Chemische Werke GmbH, входившие во времена 3-го рейха в состав концерна I.G. Farbenindustrie AG, и производивший известный отравляющий газ «Циклон-Б».

Читайте так же:
Смесь шлака с цементом

Советский Академик П.А.Ребиндер (1898-1972) и его открытие в 1928 году эффекта адсорбционного понижения прочности твёрдых тел, названное «Эффектом Ребиндера», присутствующего в химических учебниках всего мира, положили начало новой науке — физико-химической механике, а его изобретения по коллоидной химии сегодня называют «нано-технологией». Изобретение 1930-х годов повторно «изобрели» в конце ХХ века!

Модернизация в строительном производстве 1980 годы была достигнута путём почти 95% химизации всей технологии цементов и бетонов. Всепогодное и круглогодичное строительство в критических климатических условиях СССР, на вечной мерзлоте при температурах -50°С, и в южных районах с особо жарким климатом, при температурах +55°С — а также возведение самых высотных на земле железобетонных сооружений было бы невозможно без применения химических добавок для цементов и бетонов из лигносульфонатов, многотоннажных отходов ЦБК (целлюлозно-бумажных комбинатов). ПАВ (пластификаторы) начали своё существование 70 лет назад в 1947 году — в лаборатории к.т.н. Б.Д. Тринкера (1914-2004), построившего тысячи уникальных и специальных сооружений.

Лигносульфонаты технические — для строительства самое универсальное, безвредное и доступное вещество, улучшающее текучесть и реологические свойства материалов, повышающее их прочность, долговечность и износостойкость. Снижает восприимчивость к солевой агрессии и температурным колебаниям, применяется при производстве: цемента, гипса, бетона, кирпича, керамзита, керамических изделий, ДСП, клеев и смол, красителей и пигментов. При экструзии повышается скорость производства изделий.

На фото №1 — строительство уникального инженерного сооружения, дымовой трубы высотой 330 метров на Экибастузской ГРЭС № 1, выполненной в скользящей опалубке, разработанной В.О. Гидроспецстрой (главный конструктор М.М.Тринкер). Впервые в мире строительство уникального сооружения происходило круглогодично: летом 1978 года при температуре + 55°С, зимой 1978/1979 при температуре -40°С. Автор технологии и бетона А.Б. Тринкер.

На фото №2 — одно из уникальных высотных сооружений энергетической системы страны, построенное с ПАВ, ТЭЦ-25 Мосэнерго. Особо тонкостенная оболочка градирни рассчитана на 100 лет работы при градиенте температур: внутри +40-60°С, снаружи от -50°С до +50°С. Справа главный технолог Минэнерго СССР А.Б. Тринкер, слева директор станции, 1977 год.

В ХХ веке человечество терпело многомиллиардные убытки от всех видов коррозии, в связи с недолговечностью бетона в атмосферных и агрессивных средах, и только грамотное применение химических добавок обеспечило 100% первичную защиту конструкций и сооружений. Научная система особо тонкого дисперсного измельчения материалов академика П.А. Ребиндера была успешно продолжена и модернизирована его учеником в коллоидной химии Б.Д. Тринкером, который впервые изучил и применил в 1950-е годы химические добавки в микродозах. В 1970-е годы он добился практической наноиндустрии при химизации строительства, используя отходы производств, так как в основе теории влияния ПАВ является химическое диспергирование и пептизация флокул цемента, с уменьшением В/Ц.

Впервые в мировой истории опыт сверхвысотного строительства был получен в СССР при возведении Останкинской телебашни высотой 540 метров, до сих пор самого высокого северного сооружения. Необходимо уточнить, все высотные сооружения из металла — Эйфелева башня в Париже, Шуховская башня в Москве — красят, а все небоскрёбы защищают своё бетонное ядро жёсткости металлом-стеклом-силиконом. Однако железобетонный ствол Останкинской телебашни никогда не красили – такой вот вечный отечественный бетон! Все технологические подготовительные мероприятия перед возведением в рекордно сжатые сроки (1963-1967 гг.) были проведены при строительстве в 1956-1963 годах на первых дымовых трубах высотой 250 и 320 метров Запорожской и Углегорской ГРЭС.

Весь комплекс научно-исследовательских и опытно-конструкторских работ выполнил Б.Д. Тринкер, в 1960 году (через 5 лет после смерти д.т.н. В.Н. Юнга) по итогам своих работ ученый опубликовал книгу «Поверхностно-активные гидрофильные вещества и электролиты в бетонах» которая прорубила широкую дорогу массовому применению многотоннажных отходов производств целлюлозно-бумажных комбинатов — лигносульфонатов технических ССБ-СДБ-ЛСТ-ЛТМ.

В 2000 году во время пожара в течении двух суток на высотах 300-420 метров на Останкинской башне температура достигала 1000 градусов, но башня не рухнула, как предсказывали газеты ФРГ, хотя истользовался нежаростойкий портландский цемент. Как пишет в своей монографии «Жаростойкие бетоны» к.т.н. К.Д. Некрасов: «Бетон на портландском цементе при температуре выше 300 градусов распадается на составляющие минералы, арматура, расширяясь, неуправляемо деформируется, бетон рассыпается в прах. ».

Даже бетон на высокоалюминатном, то есть жаростойком (содержание Al2O3 60-70%) цементе значительно уменьшает свою прочность при температурах выше 600 градусов — Б.Д. Тринкер ещё в 1950-е годы доказал необходимость применения для подобных уникальных высотных и специальных сооружений низкоалюминатных ( Al2O3 не более 8% ) или сульфатостойких (содержание Al2O3 не более 5%) цементов.

Читайте так же:
Как изготовить цементные блоки дома

Б.Д. Тринкер на строительстве Останкинской телебашни

Поверхностно-активные вещества ПАВ из многотоннажных отходов ЦБК, лигносульфонатов технических (лигнинов), т.е. отечественые химические многофункциональные добавки для цементов и бетонов в последние годы в России были дополнительно исследованы, практически подтвердив свою универсальность, стабильность и эффективность. Лигносульфонаты технические можно успешно и прибыльно использовать при производстве: цементов, в монолитном и сборном строительстве из тяжёлого и лёгкого бетона, производстве кирпичей, керамики, керамзита, практически для всех видов вяжущих. В настоящее время есть возможность оснастить отечественные лаборатории современным оборудованием, например, на основе SIMS: анализатор-масс-спектрометр решает многие проблемы, недоступные учёным ХХ века.

В ХХI веке в России с сожалением констатируется факт отсутствия книг и мемориалов о достижениях отечественных учёных, создавших основы технологии бетонов будущего для всего мира и построивших самые уникальные сооружения из железобетона — причем строительство сопровождалось улучшением экологии страны за счет утилизации отходов целлюлозно-бумажного производства. Наоборот, на Западе почти ежегодно (!) публикуются толстые фолианты о «достижениях» нобелевского лауреата 1918 года, изобретателя самых первых в мире боевых отравляющих веществ Фрица Хабера ( Fritz Haber, 1868-1934 ), который впервые применил их в 1915 году против людей. Сегодня в ФРГ работают институт названный его именем Fritz-Haber-Institut der Max-Planck-Gesellschaft в Берлине и Мюнхене, его заводы в Кёльне.

Всемирные законы, открытые впервые 90 лет назад отечественным учёным П.А. Ребиндером, и определённые тогда как физическая химия, теперь называются „Interfase“ по-английски и „Schnittstelle“ по-немецки. В Дубае, ОАЭ, на берегу круглогодично тёплого Персидского залива в 2010 году был построен самый высокий в мире небоскрёб «Башня Халифа» (Burj Khalifa in Dubai, U.A.E.), высотой 828 метров. Проект американского архитектурное бюро, строила южнокорейская компания. В отчёте фирмы указано: «Специально для «Бурдж-Халифа» была разработана особая марка бетона, которая выдерживает температуру до +50 °C. Бетонную смесь укладывали только ночью, в бетонную смесь добавляли лёд», «строительство Бурдж-Халифа заняло 6 лет, чтобы закончить, используя 22 миллиона человеко-часов. Были наняты более чем 30 локальных подрядчиков и 12 000 рабочих из 100 стран».

Можно кратко констатировать — нашли чем хвастать, и одновременно задать вопрос, где взяли лёд при 50 градусах жары? Надо сказать, самый «холодный» период в январе-феврале в Дубае температура не опускается ниже +16-20°С и влажность для бетона благоприятная — 90%. И тем не менее, применение даже последних «достижений» ХХI века в строительстве (суперпластификаторы «очередного» придуманного поколения, лёд в бетонной смеси, бетонирование только ночью и только 2 раза в неделю) и логистики (миксеры, бетононасосы) не гарантировало темпы строительства и качество бетона иностранных фирм. А ровно 40 лет назад на возведении Экибастузской ГРЭС № 1 климат был катастрофический: летом +55°С с 15-20% влажностью, зимой -50°С, со штормовыми ветрами, сносившими башенные краны. Однако мы построили дымовые трубы: вначале в 1979 году 330-метровую, а в 1986 году — 420-метровую, которая и сегодня в „Guinness World Records“.

Последние годы в Россию интенсивно импортируют много химических добавок (супер-пластификаторы, гипер-пластификаторы, и т.д. и т.п.), которые являются продуктами химических заводов иностранных фирм, изготовлены из полимеров и сложных органических соединений (нафталины, меламины, формальдегиды, карбоксилаты, силиконы, фенилы). Они на порядок дороже отечественных пластификаторов, имеют ограничения и вредны для людей при использовании.

При этом отечественные материалы уже 70 лет успешно применяются без вредных последствий. Они имеют ТУ (технические условия), согласованные санитарно-эпидемиологическими службами, и уже давно раскрыт точный химический состав компонентов, а иностранцы — все держат в тайне! Надо также учитывать, что потребители иностранных технологий и материалов дают работу иностранным учёным, инженерам, рабочим. 2017 год был объявлен «Годом Экологии в России», в числе приоритетных задач: «Совершенствование управления отходами» — следовательно, необходимо создавать безотходные и замкнутые технологии, которые начал разрабатывать 70 лет назад учёный Б.Д. Тринкер.

Россия с ХХ века является подтверждённой законодательницей мод в технологии бетонов и всепогодного строительства с применением многотоннажных отходов производств. Научно-практические достижения отечественных учёных ХХ века по производству вечного бетона одновременно успешны с точки зрения экологии, экономии, техники безопастности, ресурсосбережению. Учёным современной России необходимо их совершенствовать и применять.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector