Tpc-setka.ru

ТПЦ Сетка
23 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Тепловое расширение красного кирпича

Применяемые для изготовления футеровки огнеупорные материалы и их важнейшие свойства , страница 4

Теплопроводность магнезитового кирпича выражается уравнением λтехн =7—0,0030 t (где t — температура испытания). По данным [19], при средней температуре 300 °С теплопроводность составляет около 3,1 ккал/(м∙ч∙град).

Однако эта величина значительно уменьшается с повышением температуры. Газопроницаемость магнезитового кирпича выражается ориентировочно цифрой 1,7 л/ (м • ч•мм вод. ст.).

Коэффициент линейного теплового расширения магнезита α= 14,1•10 ––6 . Термическое расширение выражается значениями порядка 1,2—1,4 % в температурном интервале 20—1000 °С. При этом следует иметь в виду, что расширение магнезита, в отличие от кремнеземистых материалов, продолжается до тех пор, пока не будет достигнута температура спекания магнезита. Переход от расширения к сжатию вызывается дополнительной усадкой, которая начинается с 1400° С.

Главнейшие свойства магнезитовых огнеупоров

Плот––ность, г/см 3

предел прочности при сжатии, кГ/см 2

Температура деформации, °С, под нагрузкой

Термостой––кость водя––ные тепло––смены

248030

Термостойкие на шпинелыюй связке

229040

Из плавленого магнезита

Из рапной магнезии

3. Доломитовые огнеупоры

Доломитовые огнеупоры имеют в металлургии самостоятельное значение и применяют их в виде порошков или изделий. Доломитовые огнеупоры изготавливают из горной породы, содержащей в основном минерал доломит, представляющий собой двойную углекислую соль CaMg(CO3)2. Теоретический состав сырого доломита: 30,4 % СаО, 21,9 % MgO и 47,7% СО2. В доломите в виде примесей могут содержаться кальцит, халцедон, кварц, гипс и минералы глин. Эти примеси вносят в доломит, кроме окислов кальция и магния, также А12О3, Fe2O3, SiО2 и др. В доломитовых огнеупорных материалах отношение CaO/MgO не должно быть меньше 1,39. Если содержание СаО в доломите по сравнению с теоретическим больше, то доломит называют известковистым, если же содержание MgO больше, то — магнезиальным доломитом, или известковым магнезитом. Доломит с содержанием глин от 5 до 25 % носит название глинистого доломита, или доломитового мергеля.

Структура доломитов разнообразна — от криптакристаллической до грубозернистой. Преобладают породы мелко–– и среднезернистые. В зависимости от размера слагающих его кристаллов, мм, доломиты в основном подразделяются на следующие виды [20]:

  • АлтГТУ 419
  • АлтГУ 113
  • АмПГУ 296
  • АГТУ 267
  • БИТТУ 794
  • БГТУ «Военмех» 1191
  • БГМУ 172
  • БГТУ 603
  • БГУ 155
  • БГУИР 391
  • БелГУТ 4908
  • БГЭУ 963
  • БНТУ 1070
  • БТЭУ ПК 689
  • БрГУ 179
  • ВНТУ 120
  • ВГУЭС 426
  • ВлГУ 645
  • ВМедА 611
  • ВолгГТУ 235
  • ВНУ им. Даля 166
  • ВЗФЭИ 245
  • ВятГСХА 101
  • ВятГГУ 139
  • ВятГУ 559
  • ГГДСК 171
  • ГомГМК 501
  • ГГМУ 1966
  • ГГТУ им. Сухого 4467
  • ГГУ им. Скорины 1590
  • ГМА им. Макарова 299
  • ДГПУ 159
  • ДальГАУ 279
  • ДВГГУ 134
  • ДВГМУ 408
  • ДВГТУ 936
  • ДВГУПС 305
  • ДВФУ 949
  • ДонГТУ 498
  • ДИТМ МНТУ 109
  • ИвГМА 488
  • ИГХТУ 131
  • ИжГТУ 145
  • КемГППК 171
  • КемГУ 508
  • КГМТУ 270
  • КировАТ 147
  • КГКСЭП 407
  • КГТА им. Дегтярева 174
  • КнАГТУ 2910
  • КрасГАУ 345
  • КрасГМУ 629
  • КГПУ им. Астафьева 133
  • КГТУ (СФУ) 567
  • КГТЭИ (СФУ) 112
  • КПК №2 177
  • КубГТУ 138
  • КубГУ 109
  • КузГПА 182
  • КузГТУ 789
  • МГТУ им. Носова 369
  • МГЭУ им. Сахарова 232
  • МГЭК 249
  • МГПУ 165
  • МАИ 144
  • МАДИ 151
  • МГИУ 1179
  • МГОУ 121
  • МГСУ 331
  • МГУ 273
  • МГУКИ 101
  • МГУПИ 225
  • МГУПС (МИИТ) 637
  • МГУТУ 122
  • МТУСИ 179
  • ХАИ 656
  • ТПУ 455
  • НИУ МЭИ 640
  • НМСУ «Горный» 1701
  • ХПИ 1534
  • НТУУ «КПИ» 213
  • НУК им. Макарова 543
  • НВ 1001
  • НГАВТ 362
  • НГАУ 411
  • НГАСУ 817
  • НГМУ 665
  • НГПУ 214
  • НГТУ 4610
  • НГУ 1993
  • НГУЭУ 499
  • НИИ 201
  • ОмГТУ 302
  • ОмГУПС 230
  • СПбПК №4 115
  • ПГУПС 2489
  • ПГПУ им. Короленко 296
  • ПНТУ им. Кондратюка 120
  • РАНХиГС 190
  • РОАТ МИИТ 608
  • РТА 245
  • РГГМУ 117
  • РГПУ им. Герцена 123
  • РГППУ 142
  • РГСУ 162
  • «МАТИ» — РГТУ 121
  • РГУНиГ 260
  • РЭУ им. Плеханова 123
  • РГАТУ им. Соловьёва 219
  • РязГМУ 125
  • РГРТУ 666
  • СамГТУ 131
  • СПбГАСУ 315
  • ИНЖЭКОН 328
  • СПбГИПСР 136
  • СПбГЛТУ им. Кирова 227
  • СПбГМТУ 143
  • СПбГПМУ 146
  • СПбГПУ 1599
  • СПбГТИ (ТУ) 293
  • СПбГТУРП 236
  • СПбГУ 578
  • ГУАП 524
  • СПбГУНиПТ 291
  • СПбГУПТД 438
  • СПбГУСЭ 226
  • СПбГУТ 194
  • СПГУТД 151
  • СПбГУЭФ 145
  • СПбГЭТУ «ЛЭТИ» 379
  • ПИМаш 247
  • НИУ ИТМО 531
  • СГТУ им. Гагарина 114
  • СахГУ 278
  • СЗТУ 484
  • СибАГС 249
  • СибГАУ 462
  • СибГИУ 1654
  • СибГТУ 946
  • СГУПС 1473
  • СибГУТИ 2083
  • СибУПК 377
  • СФУ 2424
  • СНАУ 567
  • СумГУ 768
  • ТРТУ 149
  • ТОГУ 551
  • ТГЭУ 325
  • ТГУ (Томск) 276
  • ТГПУ 181
  • ТулГУ 553
  • УкрГАЖТ 234
  • УлГТУ 536
  • УИПКПРО 123
  • УрГПУ 195
  • УГТУ-УПИ 758
  • УГНТУ 570
  • УГТУ 134
  • ХГАЭП 138
  • ХГАФК 110
  • ХНАГХ 407
  • ХНУВД 512
  • ХНУ им. Каразина 305
  • ХНУРЭ 325
  • ХНЭУ 495
  • ЦПУ 157
  • ЧитГУ 220
  • ЮУрГУ 309
Читайте так же:
Коричневый кирпич для камина

Полный список ВУЗов

  • О проекте
  • Реклама на сайте
  • Правообладателям
  • Правила
  • Обратная связь

Чтобы распечатать файл, скачайте его (в формате Word).

Влияние структуры материала на тепловое расширение

Эту зависимость следует рассмотреть в двух аспектах: на микроуровне (особенности строения решетки и анизотропия кристаллов) и на макроуровне (влияние состояния твердой фазы и наличия пористости).

Тела кристаллической структуры имеют значительно более высокий коэффициент термического расширения, чем тела в аморфном состоянии. Так КТР кварца примерно в 20 раз выше КТР кварцевого стекла. У более сложных по составу минералов, например альбита, при переходе в стеклообразное состояние также несколько уменьшается значение КТР.

Особенности строения кристаллической решетки сильно влияют на тепловое расширение кристаллических тел. У кристаллов с кубической решеткой тепловое расширение вдоль всех кристаллографических осей одинаково, и изменение их размеров при изменении температуры симметрично. Следовательно, коэффициент термического расширения, в данном случае линейный (a) оказывается у таких кристаллов одинаковым в любом направлении.

У изотропных материалов средний коэффициент объемного термического расширения b в ограниченном интервале температур связан с коэффициентом линейного температурного расширения aи выражается соотношением

У анизотропных кристаллов a различен вдоль разных кристаллографических осей, причем при более высоких температурах кристалл становится более симметричным. Другими словами, при повышении температуры кристалла уменьшается его анизотропия. Это связано с полиморфизмом, т.е. способностью кристалла при повышении температуры приобретать более устойчивую для этих условий форму. Особенно это отчетливо прослеживается при полиморфных превращениях кварца и диоксида циркония.

Наиболее ярко выраженное анизотропное расширение наблюдается у веществ со слоистой кристаллической решеткой, у которых химические связи настолько сильно направлены, что расширения между слоями и в плоскости слоев отличаются более чем на порядок (табл. 4.5).

Коэффициенты линейного температурного расширения некоторых анизотропных минералов

У ярко выраженных анизотропных кристаллов коэффициент термического расширения a в одном из направлений может быть отрицательным, но в целом объеме он компенсируется поло-жительным, и тогда результирующий коэффициент объемного расширения b может быть очень низким. Такие материалы обладают очень высокой термостойкостью, т.е. способностью много-кратно выдерживать без разрушения структуры резкие колебания температуры. Таковы, например, кордиерит, титанат алюминия, алюмосиликаты лития и др.

Фазовый состав и макроструктура материала оказывают существенное влияние на его коэффициент термического расширения. Последний, в свою очередь, при изменении температуры определяет напряженное состояние структуры и, как следствие, его прочностные характеристики.

Реально на границе двух фаз с разными КТР при изменении температуры одновременно возникают два вида напряжений: сжимающие напряжения, действующие на фазу с высоким a, и растягивающие, действующие на другую на фазу с меньшим a. При напряжениях сверх некоторого критического значения появляются трещины. В поликристаллическом теле, имеющем множество подобных контактов, как правило, появляется множество мельчайших трещин, которые не концентрируют напряжения, а релаксируют их.

Если поверхность контактов различных фаз велика и непрерывна, что имеет место в случае контакта керамического слоя с глазурью, трещины из-за разности коэффициентов термического расширения Da слоев не образуются, и релаксация не наступает. Тогда напряжения суммируются, и происходит отрыв слоев. Во избежание этого явления производят тщательный расчет и подбор a глазури по химическому составу с учетом a черепка.

Пористость не влияет на a в случае, если непрерывной средой является твердая фаза. Если материал состоит из слабо связанных частиц, и непрерывной средой являются поры, то a в некоторой степени зависит от размера частиц и сил их сцепления и, следовательно, от величины пор.

Как правильно выбрать термостойкий герметик для печи, камина или дымохода

Ремонт кирпичных печей и каминов гораздо удобнее производить с помощью современной строительной химии. Различные герметизирующие составы также используются при возведении либо монтаже дымоходов. Суть проблемы: из широкого ассортимента домовладельцу нужно выбрать термостойкий герметик, выдерживающий экстремальные температуры внутри печной кладки, дымоходной трубы и так далее. Наша публикация поможет сделать правильный выбор.

  • 1 Очертим сферу применения
  • 2 Виды высокотемпературных герметиков
    • 2.1 Жаростойкие пасты
    • 2.2 Силиконовые уплотнители
    • 2.3 Клеящие облицовочные составы
  • 3 Вместо заключения — советы по выбору
Читайте так же:
Масса кирпича силикатного одинарного кирпича

Очертим сферу применения

В строительных супермаркетах продается множество герметизирующих паст, используемых в системах отопления, водопровода и канализации. Надо понимать, что обычные пищевые и сантехнические герметики не являются высокотемпературными, хотя и применяются для монтажа некоторых элементов печных труб.

Глубокие трещины можно замазывать раствором, но лучше заполнить жаростойкой герметизирующей пастой

Водо– и термостойкие герметики используются для изготовления стальных печей, кладки и ремонта каминов. Варианты применения:

  1. Заделка трещин и отверстий в стенках камеры сгорания, построенной из кирпича либо сваренной из металла.
  2. Герметизация печных труб в процессе ремонта или монтажа.
  3. Наружная отделка кирпичных каминов и печей.
  4. Приклеивание жаростойких прокладок (асбестовых и графитно-асбестовых шнуров) к металлической фурнитуре – дверцам, задвижкам, железным духовкам и чугунным плитам.
  5. Гидроизоляция узлов примыкания кровли к дымоходам из металла и кирпича.

Примечание. Некоторые ремонтные составы применяются даже для восстановления огнеупорной кладки из шамотного кирпича. Одно условие: максимальная температура в топливнике – 1500 °С.

Трещина печной кладки либо сварного стыка стальной топки ведет к задымлению отапливаемого помещения и образованию копоти в зоне дефекта. Традиционный способ устранения – переложить печку или замазать сквозной просвет глиной. Современный высокотемпературный герметик позволяет решить проблему гораздо быстрее и эффективнее.

Треснувший кирпичный дымоход нередко приходится перестраивать

Подсос уличного воздуха внутрь дымоходной трубы – явление весьма неприятное. На стенках выпадает больше конденсата и сажи, которая способна загореться в любой момент от высокой температуры дымовых газов. Отсюда возникает необходимость герметизации соединений между элементами дымоотвода. О других способах применения мы подробно расскажем в процессе рассмотрения ремонтных составов.

Виды высокотемпературных герметиков

В зависимости от характера дефекта и места герметизации составы для печей делятся на следующие разновидности:

  • силикатные жаростойкие герметики, выдерживающие без разрушения температуру до +1500 °С;
  • пасты на основе силикона с максимальным температурным порогом +250 °С (кратковременно – до 350 °С);
  • специальные клея и мастики, рассчитанные на нагрев до 1000 °С;
  • клеящие смеси для наружной облицовки отопительных печей и каминов плиткой, предел теплостойкости – 800 °С.

Важный момент. Не путайте герметики для печей с маслостойкими силиконовыми пастами, применяемыми для уплотнения стыков автомобильных двигателей. Моторные составы красного цвета продаются в тюбиках и отличаются резким запахом уксуса. Их можно использовать для герметизации резьбовых соединений систем водяного отопления.

К печным герметикам также не относятся огнестойкие краски и жидкая теплоизоляция. Назначение материалов данной категории – защита поверхностей строительных конструкций от возгорания и разрушения при пожаре. Максимальный предел огнестойкости подобных покрытий – 2 часа при контакте с открытым пламенем.

Автомобильные силиконовые уплотнители красного цвета не являются жаростойкими и не применяются печниками

Чтобы вы могли выбрать подходящий тип герметизирующей пасты, предлагаем рассмотреть каждую разновидность на конкретных примерах.

Жаростойкие пасты

Огнестойкий герметик данного типа представляет собой вязкое вещество черного цвета, изготовленное на основе натриевого силиката, с такими характеристиками:

  • рабочий диапазон температур – от минус 40 до +1500 °С;
  • форма выпуска – пластиковые тубы–картриджи, вставляемые в монтажный пистолет;
  • застывает в течение 10—15 минут;
  • отвердевшая масса неэластична и способна деформироваться максимум на 7% без разрушения;
  • наносится при положительной температуре воздуха – от 1 до 40 °С (точнее указано на тубе конкретного изделия);

Черный цвет жаростойкого материала виден с нижнего торца тубы

  • хорошо пристает к шершавым и гладким поверхностям – нержавейке, оцинковке, черному металлу кирпичу;
  • цена за тубу 310 мл — 6—9 у. е. в зависимости от производителя.
  • Справка. Судя по отзывам домовладельцев, самыми известными жаростойкими герметиками являются Penosil 1500 Sealant (страна–производитель Эстония) и Soudal (Бельгия). В продаже нетрудно отыскать и более дешевые аналоги.

    Термоустойчивая паста дает отличный результат при уплотнении стыков неподвижных поверхностей, имеющих примерно одинаковый коэффициент теплового расширения:

    • трещины в печной и каминной кладке;
    • сквозные щели в дымоходах из кирпича либо металла, куда подсасывается наружный воздух;
    • прохудившиеся сварные швы стальных котлов;
    • треснувшие секции чугунных теплогенераторов (помогает не всегда).

    Также черные пастообразные герметики применяются в качестве уплотнителя между кладкой печи или камина и фурнитурой – дверцами, вьюшками, духовым шкафом и так далее. Обязательное условие – прокладка демпферной ленты (например, асбестового шнура), компенсирующей тепловое расширение металла. Иначе застывшая масса раскрошится.

    Выпавший кирпич можно посадить на жаропрочную пасту. Полное застывание массы происходит после прогрева печи

    Как правильно пользоваться жаростойким герметиком:

    1. Минимальная ширина трещины либо зазора между элементами – 5 мм. В более узкую щель густая паста не пройдет.
    2. Устранение дефектов печной или котловой топки производится «на холодную». Свищи в дымоходе можно заделывать «на горячую».
    3. Поверхности очищаются от пыли и обезжириваются, насколько позволяют условия ведения работ.
    4. Вещество наносится строительным пистолетом.

    Пример наложения состава Soudal на проем перед установкой дверцы

    При использовании некоторых составов (например, Soudal) производитель рекомендует слегка смачивать поверхности водой. Работайте в резиновых перчатках – герметик обладает высокой адгезией к различным материалам, отмыть руки будет непросто.

    Силиконовые уплотнители

    Однокомпонентный термостойкий силикон с различными добавками способен выдерживать нагрев до 250—285 °С, кратковременно – не более 315 °С. Распространенные бренды – Penosil, Tytan (Титан), «Гермент». В печном деле герметик используется для дымохода, чья поверхность не слишком горячая, например, подключенного к газовому котлу.

    Для справки. Температура дымоходной трубы обычных газовых котлов редко достигает 120 °С, конденсационных – 100 °С. Газоход камина, кирпичной печки либо твердотопливного котла нагревается в среднем до 150—200 °С, банного отопителя – до 300 °С. Подразумеваются внутренние стенки канала, наружные значительно холоднее.

    Полужидкая силиконовая масса красного (иногда – синего) цвета после застывания образует эластичный барьер, способный растягиваться и сжиматься на 100% (в 2 раза). Характеристики термоустойчивых герметиков на основе силикона выглядят так:

    • рабочая температура – от минус 40 до плюс 250 °С;
    • упаковка – картриджи пистолета объемом 310 мл;
    • время отвердевания – 20 минут;
    • адгезия к любым гладким поверхностям – стеклу, металлу, керамике и тому подобным;
    • наносится «на холодную» при температуре окружающей среды плюс 5—40 градусов;
    • стойкий к воздействию ультрафиолета;
    • ширина и глубина стыка – 6 мм и более;
    • стоимость фасовки 310 мл – от 3 до 7 у. е.

    Помимо наружной заделки щелей в кирпичных печных трубах, силиконовую пасту допускается применять для внешнего уплотнения сэндвич дымоходов в процессе монтажа. В сильно нагревающихся топках котлов и каминов герметик использовать нельзя.

    Важная рекомендация. Силикон наносится непосредственно на стык модулей сэндвича, когда дымоход не планируется разбирать в дальнейшем. Хоть масса и обладает эластичностью, разъединить секции после обработки не выйдет – придется резать болгаркой. Лучше наносить состав после сборки прямо на стык – где торец «мамы» упирается в бортик «папы».

    Клеящие облицовочные составы

    При установке печных дверок, заслонок и духовок внутрь кирпичной кладки применяется огнестойкий уплотнитель – графитно-асбестовый шнур. Чтобы он не съезжал и не выпадал в процессе монтажа, мы предлагаем фиксировать его специальным клеем, показанным на фото. Вещество «держит» температуру до 1100 °С и схватывается в течение 10—20 минут.

    Если кладка печи либо камина покрылась мелкими трещинами, затронувшими кирпичи, заделать их жаростойким герметиком нереально – дефекты слишком узкие и глубокие. В данном случае поможет один из термоустойчивых облицовочных составов:

    • однокомпонентный клей для плитки с добавлением огнеупорных минеральных наполнителей, температурный порог – 800 °С;
    • специальные мастики для приклеивания плиток и камня с пределом теплостойкости +1000 °С;
    • клеевые смеси на основе шамота и каолиновой пыли, выдерживающие нагрев до +400 °С.

    Смысл применения клеев и мастик заключается в следующем: все мелкие трещинки закрываются способом обработки и отделки стенок печи плитками либо изразцами. После ремонта камин не только герметизируется, но и приобретает замечательный внешний вид.

    Важно! Перед облицовкой печки необходимо устранить причину появления трещин, иначе новое оформление быстро испортится либо отвалится. Клеящие смеси и составы не обладают подвижностью и эластичностью.

    Технология нанесения мастик, толщина слоя и время застывания клеящего герметика обязательно расписана в инструкции на упаковке. Подготовка поверхности делается примерно одинаково – удаляется глина, краска и пыль, кладочные швы расчищаются. Затем производится грунтование глубокопроникающим составом (того же бренда). Шамотные клеевые смеси продаются в мешках, мастики – в пластиковых ведрах 5—15 кг.

    Вместо заключения — советы по выбору

    Зная свойства и характеристики различных высокотемпературных герметиков, несложно сделать правильный выбор и купить подходящий состав:

    1. Ремонт топливников кирпичных печей и каминов, а также камер сгорания отопительных котлов производится жаростойкими герметизирующими пастами с пределом теплостойкости 1300—1500 °С.
    2. Такими же составами герметизируются щели около дверок и другой печной фурнитуры. Огнестойкие пасты также допускается применять для внутренней заделки дымоходных труб из кирпича и железа.
    3. Дымоотводы из сэндвича уплотняются снаружи термостойкими силиконами, поскольку здесь играет роль эластичность материала. Исключение – внутренние поверхности каналов и газоходы банных печек, разогревающиеся до более высоких температур.
    4. Лучший способ устранения множественных мелких трещин кладки – отделка плиткой с помощью высокотемпературных клеящих герметиков – мастик и шамотных сухих смесей.

    Отделанный плиткой камин

    Совет. Герметизирующие материалы, предназначенные для авто, покупать не следует. По характеристикам они подходят лишь для дымовых каналов, но при этом агрессивны к металлу, расположенному на открытом воздухе.

    При монтаже дымоходной трубы, проходящей внутри частного дома, потребуется надежно изолировать узел прохода через кровлю. Здесь термические пасты не нужны – возьмите водостойкий кровельный герметик, продающийся в картриджах 300 мл.

    Технология гидроизоляции прохода трубы сквозь крышу. Используется эластичная насадка мастер-флеш и кровельный герметик

    Пример использования жаростойкой пасты при замене дверки печи смотрите на видео:

    Коэффициент линейного расширения стали металлов

    Коэффициенты температурного расширения металлов

    В таблице представлены значения коэффициента температурного расширения металлов (коэффициент линейного расширения металлов) в зависимости от температуры.

    Значения коэффициента температурного расширения металлов даны для следующих металлов: алюминий Al, бериллий Be, висмут Bi, вольфрам W, галлий Ga, железо Fe, золото Au, иридий Ir, кадмий Cd, кобальт Co, магний Mg, марганец Mn, медь Cu, молибден Mo, никель Ni, олово Sn, платина Pt, родий Rh, свинец Pb, серебро Ag, сурьма Sb, титан Ti, хром Cr, цинк Zn.

    Коэффициент линейного теплового расширения металлов в таблице приведен со множителем 10 6 .
    Например, значение коэффициента температурного расширения металлов в таблице для алюминия при 0°С указано 22,8, а с учетом множителя 10 6 , это значение составляет 22,8·10 -6 1/град.

    Следует отметить, что к металлам с низким коэффициентом расширения относятся такие металлы, как вольфрам, молибден, сурьма, титан и хром. Наименьшее линейное удлинение при нагревании испытывает вольфрам — коэффициент линейного расширения этого металла составляет величину от 4,3·10 -6 при 0°С до 5,8·10 -6 1/град при температуре 2100°С.

    Металлом, который максимально хорошо расширяется при нагреве, является цинк — его коэффициент температурного расширения имеет значение от 22·10 -6 до 34·10 -6 1/град. Также хорошо расширяются при нагревании такие металлы, как алюминий, кадмий и магний.

    Примечание: температурные коэффициенты линейного расширения сталей (более 300 марок) представлены в этой статье.

    Приложение 3. Коэффициент линейного расширения

    Таблица 18. Коэффициент линейного расширения

    Марка сталиРасчетное значение коэффициента a 10 6 , °С -1 , при температуре, °С
    20-10020-20020-30020-40020-500
    ВСт3, 20, 20К11,612,613,113,614,1
    09Г2С, 16ГС, 17ГС, 17Г1С, 10Г2С1, 10Г213,014,015,316,116,2
    12ХМ, 12МХ, 15ХМ, 15Х5М, 15Х5М-У11,912,613,213,714,0
    08Х22Н6Т, 08Х21Н6М2Т9,613,816,016,016,5
    12Х18Н10Т, 12Х18Н12Т, 03Х17Н14М3, 10Х17Н13М2Т, 10Х17Н13М3Т, 08Х18Н10Т, 08Х18Н12Т, 03Х18Н11, 08Х17Н13М2Т, 08Х17Н15М3Т16,617,018,018,018,0
    03Х21Н21М4ГБ14,915,716,617,317,5
    06ХН28МДТ, 03ХН28МДТ15,315,916,516,917,3
    08Х18Г8Н2Т12,313,114,414,415,3

    Производство, проектирование
    и строительство резервуарных
    парков «под ключ»

    г. Саратов, ул. Огородная, д. 162

    © 2013 — 2021 Саратовский резервуарный завод «САРРЗ».

    Все материалы данного сайта являются объектами авторского права (в том числе дизайн). Запрещается копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя.

    Температурный коэффициент линейного расширения стали

    Представлены таблицы значений среднего температурного коэффициента линейного расширения сталей ТКЛР (или ТКР) распространенных марок (более 300 марок стали) при различных температурах в интервале от 27°С до указанной в таблицах. Для отрицательных температур приведены значения истинного коэффициента линейного расширения.

    Температурный коэффициент линейного теплового расширения стали численно равен относительному изменению ее линейных размеров при увеличении (снижении) температуры этого сплава на 1 градус Цельсия или Кельвина.

    При положительной величине ТКЛР в процессе нагрева сталь увеличивается в размерах (расширяется), при отрицательном значении этого коэффициента — сжимается. Отрицательным ТКЛР сталь обладает при сверхнизких температурах, приближающихся к абсолютному нулю (-273,15°С). В этих условиях коэффициент линейного расширения стали имеет малое отрицательное значение и практически равен нулю.

    При температуре от 27 до 100°С температурный коэффициент линейного расширения стали в среднем составляет от 10 до 18·10 -6 град -1 . Сталь в нагретом состоянии (в зависимости от типа) при 900-1000°С может иметь ТКЛР до 24,6·10 -6 град -1 .

    Рассчитаем линейное удлинение балки из нержавеющей стали 12Х18Н10Т длиной 0,5 метра при повышении ее температуры с 27 до 1027°С. По таблице средний коэффициент линейного расширения стали 12Х18Н10Т в диапазоне температуры 27…1027°С равен 22,3·10 -6 град -1 . Выполним расчет: 22,3·10 -6 ·(1027-27)·0,5=0,0111. Получаем величину линейного удлинения балки 0,0111 м.

    Углеродистые стали

    В таблице приведены значения коэффициента линейного расширения углеродистой стали в интервале температуры от -173 до 1000°С. При нагревании такой стали ее ТКЛР увеличивается и может достигать 19,8·10 -6 град -1 (для стали У8) в диапазоне температуры 27-650°С.

    Поскольку углеродистая сталь почти полностью состоит из железа и не содержит добавок никеля и хрома, ее ТКЛР в значительной мере определяется коэффициентом линейного расширения этого основного компонента. Например, максимальный коэффициент линейного расширения стали 20, как и у железа, составляет 14,8·10 -6 град -1 в диапазоне температуры от 27 до 700°С.

    Коэффициенты линейного расширения углеродистой стали

    Хромоникелевые низко- и среднелегированные стали

    В таблице представлены температурные коэффициенты линейного расширения хромоникелевых низко- и среднелегированных сталей распространенных марок при температурах от -268 до 1000°С.

    Наибольшим ТКЛР из рассмотренных в таблице марок обладает хромоникелевая сталь 12Х2Н4А и 12ХН3А, который в диапазоне 27-600°С равен 15,6·10 -6 град -1 .

    Коэффициенты линейного расширения хромоникелевой стали

    Хромистые стали

    Хромистые стали имеют коэффициент линейного расширения в среднем от 10 до 13·10 -6 град -1 . Дополнительно стоит отметить стали ШХ15 и 40Х, значение ТКЛР которых составляет 13,4…15,7·10 -6 град -1 .

    Коэффициенты линейного расширения хромистой стали

    Хромоникелевые стали с содержанием никеля до 20%

    В таблице представлены коэффициенты линейного расширения хромоникелевых сталей с содержанием никеля до 20%. К этому типу стали относится значительное многообразие марок, которые обладают широким диапазоном ТКЛР — от 8 до 17,5·10 -6 град -1 при температуре до 100°С и от 10 до 24,6·10 -6 град -1 в диапазоне до 1000°С.

    Коэффициенты линейного расширения хромоникелевой стали с содержанием никеля до 20%

    Хромоникелевые стали и сплавы с содержанием никеля более 20%

    Хромоникелевые стали с содержанием никеля более 20% имеют температурный коэффициент линейного расширения до 19,8·10 -6 град -1 (сплав ХН46Б). Сталью такого типа с наименьшим значением ТКЛР является 04ХН40МДТЮ, ее средний коэффициент линейного расширения при температуре до 100°С равен 8,2·10 -6 град -1 .

    Коэффициенты линейного расширения хромоникелевой стали с содержанием никеля более 20%

    Марганцевые и хромомарганцевые стали

    В таблице представлены средние значения коэффициентов теплового линейного расширения марганцевых и хромомарганцевых сталей в диапазоне температуры от -269 до 1000°С. Следует отметить, что минимальным ТКЛР при высоких температурах обладает сталь 30ХГСА.

    Коэффициенты линейного расширения марганцевой и хромомарганцевой стали

    Хромомолибденовые стали

    Хромомолибденовые стали по сравнению с другими типами имеют относительно невысокие значения ТКЛР. Коэффициенты линейного расширения стали этого типа имеют величину 9,7…15,5·10 -6 град -1 при температурах до 1000°С.

    Коэффициенты линейного расширения хромомолибденовой стали

    Хромовольфрамовые и хромованадиевые стали

    В таблице приведены средние коэффициенты линейного расширения хромовольфрамовых и хромованадиевых сталей для интервала температуры от 27 до 1000°С. По данным таблицы видно, что эти типы стали имеют схожие значения ТКЛР.

    Коэффициенты линейного расширения хромовольфрамовой и хромованадиевой стали

    Хромокобальтовые стали и сплавы

    Хромокобальтовые стали имеют температурный коэффициент линейного расширения 12…17,7·10 -6 град -1 в условиях до 300°С и 15,5…17,8·10 -6 град -1 при высоких температурах. Следует особо отметить сталь 40К44Х20Н20М4В4Б4, средний коэффициент расширения которой практически не меняется в диапазоне от 300 до 1000°С.

    Коэффициенты линейного расширения хромокобальтовой стали

    Кремнистые, титановые и другие стали и сплавы

    В таблице содержаться значения среднего коэффициента линейного расширения титановых, кремнистых и других сталей и сплавов в диапазоне температуры от 27 до 1000°С. Стали рассмотренных типов имеют относительно невысокий ТКЛР, который например у стали Э16 составляет всего 7·10 -6 град -1 при температуре 27-100°С.

    голоса
    Рейтинг статьи
    Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector