Tpc-setka.ru

ТПЦ Сетка
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Теплопроводность керамического кирпича рядового

Керамический кирпич — Теплопроводность

Исторически в строительстве кирпич применяется очень давно, современная популярность этого материала частично объяснима доверием к нему со стороны застройщиков. Ведь при упоминании стены в подсознании у многих отражается лишь её исполнение в кирпиче. В современном мире этот искусственный керамический материал вовсе не собирается сдавать свои позиции, а лишь расширяет ассортимент и улучшает свои свойства.

Однако, постоянное удорожание энергоносителей вынуждает даже неспециалистов пристально рассматривать любые материалы на вопрос теплопотерь. Ниже мы составили для вас таблицу, в которой рассмотрели особенности каждого вида керамического кирпича и их теплопроводность.

Основные виды керамического кирпича:

Подвид материалаСфера применения и особенностиКоэффициент теплопроводности Вт/м∙°С
ПолнотелыйПрименяется при возведении любого типа стен, преимущественно применяют для несущих колонн, стен и перегородок, большой выбор марок прочности позволяет использовать его в наиболее ответственных конструкциях. В этот класс входят и материалы с техническими пустотами, что обеспечивают прочность кладки.0,5-0,8
Пустотелый (щелевой и поризованный)В этом виде кирпича, для повышения теплоизоляционных свойств предусмотрены каналы или отверстия различной формы.0,22-0,43
ОгнеупорныйНаходит своё применение при возведении элементов, что могут подвергаться воздействию открытого пламени и высокой температуры – до 1400-1800 °С, в промышленном производстве он незаменим. Разумеется в жилом строительстве температура огня в топке редко превышает 800 °С и применяются менее стойкие марки шамотного кирпича.0,5-1,28
ЛицевойПолнотелый кирпич предполагает его дальнейшую отделку, так как нормы его производства допускают небольшие неровности, изменения в фактуре и цвете. Для сохранения естественной красоты кирпичной кладки используют облицовочный кирпич, лишённый этих недостатков. В его линейке также есть много декоративных и доборных элементов с радиальными закруглениями.0,36-0,52
КлинкерВершина развития керамики фасадных облицовочных материалов проверенная временем, производится из глины, что проходит несколько стадий обжига. Обладает стойкостью к воздействию щелочей и кислот, малопроницаем для влаги, поэтому выдерживать большое количество циклов «замерзания-оттаивания» — имеется в ввиду изменений сезонов зима-весна. Обычно производителями гарантируется около 100-300 циклов, что подразумевает беспроблемную эксплуатацию столько же лет.0,8-0,9

Не стоит полагать, что виды этих стеновых материалов не могут сочетаться: ведь в одно и то же время облицовочный кирпич может быть и пустотелым, и это не уменьшит несущую способность элементов выполненных из него, а лишь уменьшит теплопроводность ограждающих конструкций и сохранит комфортную температуру в вашем доме.

Теплопроводность кирпича, сравнение кирпича по теплопроводности

Рассмотрена теплопроводность кирпича различных видов (силикатного, керамического, облицовочного, огнеупорного). Выполнено сравнение кирпича по теплопроводности, представлены коэффициенты теплопроводности огнеупорного кирпича при различной температуре — от 20 до 1700°С.

Теплопроводность кирпича существенно зависит от его плотности и конфигурации пустот. Кирпичи с меньшей плотностью имеют теплопроводность ниже, чем с высокой. Например, пеношамотный, диатомитовый и изоляционный кирпичи с плотностью 500…600 кг/м 3 обладают низким значением коэффициента теплопроводности, который находится в диапазоне 0,1…0,14 Вт/(м·град).

Читайте так же:
Какие вещества выделяет силикатный кирпич

Кирпич в зависимости от состава можно разделить на два основных типа: керамический (или красный) и силикатный (или белый). Значение коэффициента теплопроводности кирпича указанных типов может существенно отличатся.

Керамический кирпич. Производится из высококачественной красной глины, составляющей около 85-95% его состава, а также других компонентов. Такой кирпич изготавливают путем формовки, сушки и обжига, при температуре около 1000 градусов Цельсия. Теплопроводность керамического кирпича различной плотности составляет величину 0,4…0,9 Вт/(м·град).

По сфере применения керамический кирпич подразделяется на рядовой строительный, огнеупорный и лицевой облицовочный. Лицевой декоративный (облицовочный) кирпич имеет ровную поверхность и однородный цвет и применяется для облицовки зданий снаружи. Теплопроводность облицовочного кирпича равна 0,37…0,93 Вт/(м·град).

Силикатный кирпич. Изготавливается из очищенного песка и отличается от керамического составом, цветом и теплопроводностью. Теплопроводность силикатного кирпича немного выше и находится в интервале от 0,4 до 1,3 Вт/(м·град).

Теплопроводность кирпича также зависит от его структуры и формы:

§ Пустотелый кирпич — выполнен с пустотами, сквозными или глухими и имеет меньшую теплопроводность в сравнении с полнотелым изделием. Теплопроводность пустотелого кирпича составляет от 0,4 до 0,7 Вт/(м·град).

§ Полнотелый — используется, как правило, при основном строительстве несущих стен и конструкций и имеет большую плотность. Полнотелый силикатный и керамический кирпич в 1,5-2 раза лучше проводит тепло, чем пустотелый.

Печной или огнеупорный кирпич. Изготавливается для эксплуатации в агрессивной среде, применяется для кладки печей, каминов или теплоизоляции помещений, которые находятся под воздействием высоких температур. Огнеупорный кирпич обладает хорошей жаростойкостью и может применяться при температуре до 1700°С.

Теплопроводность огнеупорного кирпича при высоких температурах увеличивается и может достигать значения 6,5…7,5 Вт/(м·град). Более низкой теплопроводностью в сравнении с другими огнеупорами отличается пеношамотный и диатомитовый кирпич. Теплопроводность такого кирпича при максимальной температуре применения (850…1300°С) составляет всего 0,25…0,3 Вт/(м·град). Следует отметить, что теплопроводность шамотного кирпича, который традиционно применяется для кладки печей, — выше и равна 1,44 Вт/(м·град) при 1000°С.

Характеристики керамических блоков

Керамические блоки представляют собой энергосберегающий строительный материал для возведения наружных несущих и самонесущих стен, внутренних несущих стен и перегородок при строительстве малоэтажных домов

Австрийский концерн Wienerberger является крупнейшим производителем керамических блоков для строительства малоэтажных домов. Долголетний опыт работы по производству пустотелых керамических блоков POROTHERM, в сочетании с современной технологией производства гарантирует наивысшие качество продуктов, а также системное проектирование и строительство зданий.

Керамический пустотный блок POROTHERM представляет собой теплую поризованную керамику. При подготовке сырья в глиняную массу добавляют мелкие древесные опилки. После выгорания опилок при обжиге, образуются мелкие поры, занимающие до 20% объема керамического черепка. По сравнению с обычной керамикой, поризованная имеет меньшую плотность и коэффициент теплопроводности.

Читайте так же:
Сколько составляет масса кирпича

Характеристики керамических блоков POROTHERM

  • Пустотность блоков составляет 50%;
  • Наличие щелевидных пустот, расположенных специальным образом, значительно увеличивают сопротивление теплопередаче, так как воздух обладает прекрасным теплоизолирующими свойствами и его коэффициент теплопроводности в 17-19 раз меньше, чем у поризованной керамики;
  • Пустотность также позволяет уменьшить плотность изделия до 735-750 кг/м 3 ;
  • Форма боковой поверхности обеспечивает выполнение вертикального пазогребневого стыка, не требующего использования кладочного раствора, что упрощает процесс кладки и улучшает теплотехнические показатели стен.

Виды керамических блоков Porotherm

Размеры, масса и другие характеристики блоков Поротерм для наружных, несущих и самонесущих стен

Блоки Поротерм для внутренних перегородок

* – значение указано для термоизоляционного раствора с коэффициентом λ=0.2Вт/(м∙°С)
** – значение указано для обычного цементно -песчаного раствора.
Значения термического сопротивления определены согласно EN 1745.

Доборные блоки

Коэффициент теплопроводности керамических пустотных блоков

Пустотные керамические блоки Porotherm представляют собой эффективный строительный материал для возведения наружных несущих и самонесущих стен, внутренних несущих стен и перегородок.

Уникальные теплотехнические свойства блокам обеспечивают:

  • материал – поризованная керамика;
  • форма – щелевидные вертикальные пустоты, превращающиеся в кладке стены в замкнутые воздушные прослойки.

С точки зрения теплотехники блок является неоднородным материалом. Если провести сечение перпендикулярное к плоскости стены то в него попадут стенки из поризованной керамики толщиной t=8-12 мм, разделенные воздушными прослойками. Поризованная керамика сама по себе имеет более высокие теплотехнические показатели по сравнению с обычной плотной керамикой.

Согласно СНиП II-3-79** приведенное термическое сопротивление R неоднородной ограждающей конструкции определяется согласно п.2.8. Методика определения термического сопротивления согласно п.2.8. относительно сложная по сравнению с методикой расчета для стен из однородных материалов. Формула для определения термического сопротивления стены из однородных материалов, для которых коэффициент теплопроводности λ известен и имеет вид:

Где δ, (м) – толщина материала стены,
λ, (Вт/ м2∙°С) – коэффициент теплопроводности материала стены.

В случае многослойной конструкции стены в формуле будет столько членов вида δ/λ сколько и слоев.

Для определения термического сопротивления неоднородных конструкций используют как экспериментальные, так и расчетные методы. Значение R, определенное экспериментально можно использовать для расчета так называемого приведенного значения l по формуле приведенной ниже:

где U, Вт/(м2∙°С) – коэффициент теплопередачи.

Значение U для стен из Porotherm 38 на теплоизолирующем кладочном растворе с коэффициентом теплопроводности λ=0,2 Вт/(м∙°С) составляет 0,35 Вт/(м2∙°С).

Тогда
(м2∙°С)/Вт

Находим коэффициент теплопроводности:
(Вт/(м∙°С)

Для Porotherm 44 и Porotherm 50 соответственно:
Вт/(м∙°С)

Вт/(м∙°С)

Технические характеристики керамических пустотных блоков Porotherm

* – при применении легкого (теплого) кладочного раствора с λ=0.2Вт/(м∙°С)
** – при использовании цементно-песчаного кладочного раствора.

Читайте так же:
Кирпич м 100 желтый

Расход стеновых материалов на единицу объема / площади стен

Сравнение блоков POROTHERM и других строительных материалов
Толщины стен из рядового кирпича и блоков из ячеистого бетона эквивалентные блокам Porotherm на теплоизолирующем растворе по теплотехническим характеристикам (м)

Толщины стен из рядового кирпича и блоков из ячеистого бетона эквивалентные блокам Porotherm на обычном растворе по теплотехническим характеристикам (м)

Сравнение необходимой толщины стен

Толщина стен рассчитана по формуле

Важно!
К расчету стоимости стен из блоков Porotherm

Для корректного сравнения стоимости стен из керамических пустотных блоков Porotherm с другими материалами следует учитывать следующее:

  • Стоимость стены следует определять для 1 м2, т. е. расчет следует выполнять для конечной строительной продукции «стена в деле» = стоимость_материалов + стоимость_работ.
  • Расчет для м3 будет ошибочным! Для одних и тех же фасадов дома при различных толщинах стен будет получаться различная кубатура.

Следует обязательно учитывать, что стены из Porotherm не требуют утепления в отличие от кирпичных. Поэтому в расчете для кирпичной кладки помимо кирпича и раствора должны быть учтены все дополнительные материалы для утепления, включая сетку по утеплителю для устройства штукатурки.

Распространенная ошибка – сравнения цен на кирпич и блоки Porotherm по приведенным показателям (грн/м3, грн/1000 шт.). Вообще блок дороже чем кирпич. Было бы странно, если бы такое технологичное изделие как Porotherm стоило дешевле обычного кирпича.

Но, блок по своим теплотехническим характеристикам позволяет выполнить однослойные стены (не требующие дополнительного утепления), а кирпичная кладка нет. А утепление это дополнительные трудозатраты и материалы.

В итоге стоимость 1 м2 стены из блоков Porotherm не дороже (в некоторых случаях даже дешевле) чем, стоимость 1м2 кирпичной стены с утеплением. При этом, скорость выполнения кладки из керамических блоков Porotherm в 2.5-3 раза больше, чем кирпичной. В случае кирпичной кладки к срокам каменных работ следует еще добавить сроки по устройству утепления.

Сравнение теплопроводности строительных материалов

Любой человек согласится, что дома должно быть всегда уютно: летом не жарко, зимой – тепло. За сохранение тепла и прохлады «отвечает» показатель теплопроходимости. Чем лучше перегородка проводит, то есть отдает тепло, тем быстрее он будет остывать и нагреваться. Стены и крыша дома должны иметь низкую проводность, а некоторые элементы, например, радиаторные батареи, могут быть хорошими проводниками. Узнать теплопроводность бетона и других смесей и блоков можно по таблицам или рассчитать по формуле.

  1. Что это такое
  2. Особенности выбора на основе этих показателей
  3. Влияющие факторы
  4. Коэффициент материалов из бетона
  5. Сравнение строительных материалов по толщине

Что это такое

Теплопроводность строительных материалов играет важную роль при их выборе. Термин означает количество тепла, которое разные перегородки одинаковой толщины могут провести за единицу времени. Чем ниже показатель, тем хуже тепло проходит – плоскость плохо нагревается и медленно остывает.

Читайте так же:
Штроборез для кирпича своими руками

Коэффициент проницаемости показывает, сколько тепла может пройти через 1 метр метровой стены при разнице температур в 1 градус. Единицей измерения является Вт/(м*С), где м – это метры, а С – градус Цельсия.

В зависимости от значения стройматериалы используют для разных целей: с низкой проводимостью применяют для утепления, чтобы дома не было холодно, с высокой – для отвода тепла и быстрого охлаждения, например, для батарей.

Обратите внимание! Плоскости с низким значением будут медленнее остывать. Это позволит сэкономить на отоплении.

Тепловое или термическое сопротивление – это величина, обратная теплопроходимости. Она отражает, насколько сильно перегородка мешает прохождению тепла. То есть чем выше сопротивление, тем ниже проводность – этот стройматериал можно использовать для утепления. Формула для расчета сопротивления

  • R – нормативное температурное сопротивление.
  • H – толщина в метрах.
  • λ – значение проводимости.

Величина измеряется в (м*С)/Вт, где м – метр, С- градус Цельсия.

Особенности выбора на основе этих показателей

Чтобы построить хороший, прочный дом важно не забывать про теплопроницаемость стен и потолков. Увидеть важность этого свойства можно в простом примере: стена из бетона толщиной в 30 сантиметров и перегородка из кирпича в 50 см одинаково справляются с теплопотерей. Плита из железобетона должна быть примерно в 3 раза толще плиты из керамзитобетона.

При выборе стоит помнить не только о показателе конкретного материала, но и об используемом утеплителе. Например, показатель пенополистирола – 0,031-0,05 Вт/(м*С), изолона – 0,031-0,037 Вт/(м*С). Для сравнения: теплопроводность железобетона плотностью 2,5 тонны на куб. метр – 1,7, а дерева – 0,2-0,23.

Стоит отметить, зачем вообще нужно определять этот показатель при строительстве. Специалистами рассчитана норма для разных климатических поясов России и для разных мест: для стен, крыш, перекрытий. Если выбранные стройматериалы не дотягивают до нормы СНиП, их необходимо утеплить.

Обратите внимание! Если при строительстве использовались несколько стройматериалов в одном месте (например, для крыши или пола), для определения итогового коэффициента все значения складываются.

Влияющие факторы

Если сравнить свойства одного и того же стройматериала в разных условиях, легко увидеть, что теплоизоляционный коэффициент будет разным. Различается величина также у разных марок, причем разница может быть довольно значимой.

На проводимость влияют следующие факторы:

  1. Плотность. При высокой плотности частицы расположены близко друг от друга, следовательно, передача тепла будет происходить довольно быстро. Легкие стройматериалы (например, керамзит) хуже отдают тепло, чем тяжелые.
  2. Пористость. Чем она выше, тем меньше тепла пропускается. Воздух отличается маленькой проводимостью, значит, чем больше отверстий в поверхности, тем слабее будет теплопередача.
  3. Структура самих пор. Большие, сообщающиеся между собой поры повышают проницаемость бетонной перегородки. Чтобы сохранить тепло внутри, лучше выбирать мелкие, замкнутые отверстия.
  4. Влажность. При намокании бетона или кирпича воздух вытесняется, заменяется жидкостью или становится влажным воздухом. Коэффициент увеличивается почти в 20 раз.
  5. Температура. Чем она выше, тем выше коэффициент.

Обратите внимание! Зимой, когда влага превращается в лед, теплопотери увеличиваются еще сильнее. Кроме того, промерзание ведет к разрушению.

Коэффициент материалов из бетона

Бетонный раствор – это неоднородная цементно-песчаная смесь, которая имеет сложную структуру. Его коэффициент зависит от конкретного состава.

Читайте так же:
Чем обработать кирпич от грибка

Узнать теплопроводность бетона можно по таблицам или по характеристике конкретной марки. Средние значения следующие:

  1. Теплопроводность железобетонной плиты плотностью 2,5 – 1,7.
  2. Пенобетона – 0,08-0,29.
  3. Керамзитобетона – 0,14-0,66.
  4. Красный глиняный кирпич – 0,56.
  5. Силикатный кирпич – 0,7.
  6. Блоков из газосиликата – 0,072-0,165.
  7. Теплопроводность штукатурки – 0,1-1.

Точные данные теплопроводности бетонной стены зависят от конкретных марок и их характеристик.

Сравнение строительных материалов по толщине

Таблица теплопроводности строительных материалов позволит быстро просчитать, хватает ли коэффициента перекрытия, а также найти необходимую толщину. Также можно воспользоваться онлайн калькулятором на сайтах строительных материалов.

Обратите внимание! В таблицах зачастую присутствует не одно значение теплопроницаемости, а несколько. Основное дается для сухого стройматериала при испытании в лабораторных условиях по ГОСТу, другие – для различных условий эксплуатации, например, при сухом и влажном воздухе, при разных температурах.

Для самостоятельного расчета толщины стены можно воспользоваться формулой:

Показание R можно узнать в таблице «Строительная климатология», в которой для каждого региона даны свои значения. Показания λ даны в технических характеристиках материала.

Для Москвы R составляет 3,28. Если перегородки будут выполнены из железобетона (плотность 2,5 т/ куб. м, λ= 1,690), их толщина должна составить больше 5,5 метра.

Если взять керамзитобетон плотностью 1,8 т/куб. м. (λ = 0,66), величина «снизится» до 2,16 метров. Для пенобетона плотностью 1 т/куб. м. (λ = 0,29), размер составит меньше метра – 95 см.

Легко увидеть, что, чем выше показатель проводимости тепла, тем больше должна быть толщина. Чтобы уменьшить эту величину, их дополнительно оббивают более тонкими утеплителями.

При выборе материала для пола, стены, крыши или перегородки стоит обратить внимание на теплопроводность стройматериалов. Эта величина отвечает за проведение тепла через материал, то есть за то, как быстро будет нагреваться и остывать дом. Чем она ниже, тем хуже проходит тепло и тем медленнее здание будет промерзать.

Сравнение арболитовых блоков и газобетона — что лучше

Сравнение характеристик кирпича и газобетона

Технология алмазной резки для бетонных стен

Сколько надо цемента чтобы сделать на 1 м3 бетона

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector