Tpc-setka.ru

ТПЦ Сетка
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Свойства жидкости по грунтовке

Жидкость И — свойства и применение

В зимний период, когда температура воздуха во многих регионах России опускается до -30ºС и ещё ниже, перед автовладельцами возникают сложные проблемы. Дизельные двигатели на транспортных средствах перестают нормально функционировать, так как при пониженных температурах весьма непросто запустить мотор. К тому же замерзает (кристаллизуется) вода, которая в процессе эксплуатации так или иначе образовывается в топливном баке.

Для преодоления этих трудностей часто используется жидкость «И». Изначально она была предназначена в качестве добавки к авиационному топливу. Сейчас сфера применения средства расширилась, и автовладельцы используют его как присадку к дизельному топливу и иногда бензину.

Состав

Стоит заметить, что данная присадка встречается в двух вариантах отличных по составу:

  1. Жидкость И (Производители: ОАО ПО «Химпром» г. Кемерово, Компания «Волга-Ойл» Нижний Новогород) ;
  2. Жидкость И-М. (ЗАО «Заречье» Нижний Новгород).

Несмотря на различный состав, принцип действия, технические характеристики и эффективность применения обоих средств в общем-то абсолютно идентичны.

В состав жидкости «И» входят следующие компоненты: этилцеллозольв, изопропанол, а также поверхностно-активные добавки (ПАВ). Они предназначены для снижения поверхностного натяжения.

Присадка «И-М», в свою очередь, состоит только лишь из этилцеллозольва и метанола. Эти вещества распределены в «И-М» в равных долях. Важно знать, что все составляющие обеих жидкостей (кроме ПАВ) отличаются высокой токсичностью. Это свойство относится как непосредственно к самой жидкости, так и к её испарениям.

Технические характеристики

К основным техническим характеристикам жидкости «И» относятся следующие:

  • прозрачный цвет с немного желтоватым оттенком;
  • специфический запах; плотность в условиях нормальной комнатной температуры составляет от 858 до 864 кг/м3;
  • доля воды находится в пределах, не превышающих 0,4%;
  • коэффициент оптического преломления составляет от 1,36 до 1,38;
  • антикоррозийное воздействие не наблюдается;
  • летучесть присутствует;
  • гарантийный срок хранения составляет 1 год.

Производство средства «И», предназначенного для дизтоплива, осуществляется в строгом соответствии техническим требованиям. Применяются в этом случае отраслевой стандарт (ОСТ) 53-3-175-73-99, а также технические условия (ТУ) 0257-107-05757618-2001.

Применение присадки

Средство добавляется в топливо непосредственно во время заправки транспортного средства, при этом рекомендовано пользоваться специальным дозатором.

Средство заливают в топливный бак: 20 мл на 10 л топлива. Рекомендовано совмещать с бензином А-80 и А-92.

При добавлении средства нужно учитывать объём горючего и температуру окружающего воздуха. Так, при t = от 0ºС и до -15ºС рекомендуемое количество жидкости «И» составляет 0,1% относительно общего объёма дизтоплива, которое находится в баке.

Если на улице от -15ºС до -30ºС, то это количество увеличивается примерно до 0,2%.

При температуре в -30ºС и ниже доля присадки возрастает до 0,3%. При этом стоит заметить, что объём в 0,3% — это максимально допустимое количество жидкости «И», которое можно использовать. Если этот объём увеличить ещё больше, то это приведёт к негативным последствиям.

Чрезмерная концентрация данной присадки в дизельном топливе в худшую сторону повлияет на эксплуатационные возможности автомобильного двигателя. Кроме того, при переизбытке жидкости «И» снижается температура возгорания топлива.

Добавим также, что применение средства никак не влияет на физико-химические свойства топлива. Вместе с тем, использование жидкости «И» в длительный временной период не желательно, так как постепенно снижается смазывающая способность дизтоплива.

Преимущества и недостатки

Жидкостью «И» в основном пользуются российские собственники большегрузов и дальнобойщики. Они применяют её в качестве аналога зарубежным антигелям, которые не всегда эффективно действуют в условиях нашей зимы.

Главная задача средства — предотвращение кристаллизации растворённой в топливе воды.

Однако, у жидкости «И» есть и другие преимущества.

Во-первых, использование присадки способствует снижению вероятности образования льда в карбюраторе, а также в топливном фильтре.

Во-вторых, продлевается срок службы батареи аккумулятора и предотвращается износ двигателя.

В-третьих, после длительной остановки транспортного средства на открытом пространстве в зимних условиях применение жидкости помогает быстрее запустить двигатель.

В-четвёртых, использование средства позволяет применять так называемое летнее дизтопливо при холодной температуре.

В-пятых, при добавлении жидкости «И» улучшается сгорание топлива, что, в свою очередь, приводит к снижению токсичности отработанных газов. К этому можно добавить тот факт, что применение данной присадки не уменьшает октановое число бензина. К тому же средство очень экономично.

Использование жидкости «И» максимально эффективно при значительном снижении температуры. Это подтверждается специалистами Кемеровского центра стандартизации, метрологии и испытаний, которые провели соответствующее исследование. Сотрудники центра применили добавку «И» к дизельному топливу, а также к бензинам (марки А-80 и А-92). Согласно выводам экспертов, использование жидкости «И» улучшило низкотемпературные показатели всех рассматриваемых видов топлива, а именно температуру застывания и температуру помутнения.

Справедливости ради стоит отметить, что жидкость «И» обладает не только преимуществами, есть у неё и существенные недостатки.

К их числу, в первую очередь, относятся токсичность и пожароопасность. Важно знать, что ядовита как сама жидкость, так и её пары, поэтому при контакте с данной добавкой необходимо использовать средства индивидуальной защиты.

Читайте так же:
Самая лучшая грунтовка для потолка

Кроме того, при хранении и использовании присадки нужно тщательно соблюдать меры противопожарной безопасности.

Добавим также, что жидкость «И» обладает гигроскопическим эффектом — способностью поглощать из воздуха водяные пары. По этой причине средство с течением времени постепенно утрачивает свою эффективность, а, значит, запасать его «на чёрный день» в больших количествах нет никакого смысла.

Кроме того, жидкость «И», а также уже разведённое с ней топливо не рекомендовано хранить в оцинкованной таре.

Жидкость «И», несмотря на некоторые свои недостатки, всё-таки обладает достаточно устойчивым спросом на отечественном рынке. Непосредственное влияние на это оказывают, конечно, наши климатические условия.

Многие автовладельцы или водители (как правило, тяжёлой техники вроде большегрузов или тягачей) признают данное средство весьма эффективным. Особенно это относиться к случаям, когда двигатель заправлен летним топливом.

Выручит присадка и в зимнюю стужу при вынужденной остановке машины из-за заглохшего двигателя.

Водителями отмечается также и довольно значительное улучшение работы фильтров. Пока в России будут суровые зимние холода, будет и спрос на специальные добавки к топливу. Жидкость «И» тоже будет присутствовать в этом списке.

Свойства жидкости по грунтовке

Молекулы вещества в жидком состоянии расположены почти вплотную друг к другу. В отличие от твердых кристаллических тел, в которых молекулы образуют упорядоченные структуры во всем объеме кристалла и могут совершать тепловые колебания около фиксированных центров, молекулы жидкости обладают большей свободой. Каждая молекула жидкости, также как и в твердом теле, «зажата» со всех сторон соседними молекулами и совершает тепловые колебания около некоторого положения равновесия. Однако, время от времени любая молекула может переместиться в соседнее вакантное место. Такие перескоки в жидкостях происходят довольно часто; поэтому молекулы не привязаны к определенным центрам, как в кристаллах (см. §3.6), и могут перемещаться по всему объему жидкости. Этим объясняется текучесть жидкостей. Из-за сильного взаимодействия между близко расположенными молекулами они могут образовывать локальные (неустойчивые) упорядоченные группы, содержащие несколько молекул. Это явление называется ближним порядком (рис. 3.5.1).

Рис. 3.5.2 иллюстрирует отличие газообразного вещества от жидкости на примере воды. Молекула воды H2O состоит из одного атома кислорода и двух атомов водорода, расположенных под углом . Среднее расстояние между молекулами пара в десятки раз превышает среднее расстояние между молекулами воды. В отличие от рис. 3.5.1, где молекулы воды изображены в виде шариков, рис. 3.5.2 дает представление о структуре молекулы воды.

Вследствие плотной упаковки молекул сжимаемость жидкостей, т. е. изменение объема при изменении давления, очень мала; она в десятки и сотни тысяч раз меньше, чем в газах. Например, для изменения объема воды на 1 % нужно увеличить давление приблизительно в 200 раз. Такое увеличение давления по сравнению с атмосферным достигается на глубине около 2 км.

Коэффициент называют температурным коэффициентом объемного расширения . Этот коэффициент у жидкостей в десятки раз больше, чем у твердых тел. У воды, например, при температуре 20 °С , у стали , у кварцевого стекла .

Тепловое расширение воды имеет интересную и важную для жизни на Земле аномалию. При температуре ниже 4 °С вода расширяется при понижении температуры (). Максимум плотности вода имеет при температуре 4 °С.

При замерзании вода расширяется, поэтому лед остается плавать на поверхности замерзающего водоема. Температура замерзающей воды подо льдом равна 0 °С. В более плотных слоях воды у дна водоема температура оказывается порядка 4 °С. Благодаря этому жизнь может существовать в воде замерзающих водоемов.

Наиболее интересной особенностью жидкостей является наличие свободной поверхности . Жидкость, в отличие от газов, не заполняет весь объем сосуда, в который она налита. Между жидкостью и газом (или паром) образуется граница раздела, которая находится в особых условиях по сравнению с остальной массой жидкости. Молекулы в пограничном слое жидкости, в отличие от молекул в ее глубине, окружены другими молекулами той же жидкости не со всех сторон. Силы межмолекулярного взаимодействия, действующие на одну из молекул внутри жидкости со стороны соседних молекул, в среднем взаимно скомпенсированы. Любая молекула в пограничном слое притягивается молекулами, находящимися внутри жидкости (силами, действующими на данную молекулу жидкости со стороны молекул газа (или пара) можно пренебречь). В результате появляется некоторая равнодействующая сила, направленная вглубь жидкости. Поверхностные молекулы силами межмолекулярного притяжения втягиваются внутрь жидкости. Но все молекулы, в том числе и молекулы пограничного слоя, должны находиться в состоянии равновесия. Это равновесие достигается за счет некоторого уменьшения расстояния между молекулами поверхностного слоя и их ближайшими соседями внутри жидкости. Как видно из рис. 3.1.2, при уменьшении расстояния между молекулами возникают силы отталкивания. Если среднее расстояние между молекулами внутри жидкости равно , то молекулы поверхностного слоя упакованы несколько более плотно, а поэтому они обладают дополнительным запасом потенциальной энергии по сравнению с внутренними молекулами (см. рис. 3.1.2). Следует иметь ввиду, что вследствие крайне низкой сжимаемости наличие более плотно упакованного поверхностного слоя не приводит к сколь-нибудь заметному изменению объема жидкости. Если молекула переместится с поверхности внутрь жидкости, силы межмолекулярного взаимодействия совершат положительную работу. Наоборот, чтобы вытащить некоторое количество молекул из глубины жидкости на поверхность (т. е. увеличить площадь поверхности жидкости), внешние силы должны совершить положительную работу , пропорциональную изменению площади поверхности:

Читайте так же:
Расход краски грунтовки гф 021
.

Коэффициент называется коэффициентом поверхностного натяжения (). Таким образом, коэффициент поверхностного натяжения равен работе, необходимой для увеличения площади поверхности жидкости при постоянной температуре на единицу .

В СИ коэффициент поверхностного натяжения измеряется в джоулях на метр квадратный () или в ньютонах на метр ().

Из механики известно, что равновесным состояниям системы соответствует минимальное значение ее потенциальной энергии. Отсюда следует, что свободная поверхность жидкости стремится сократить свою площадь. По этой причине свободная капля жидкости принимает шарообразную форму. Жидкость ведет себя так, как будто по касательной к ее поверхности действуют силы, сокращающие (стягивающие) эту поверхность. Эти силы называются силами поверхностного натяжения .

Наличие сил поверхностного натяжения делает поверхность жидкости похожей на упругую растянутую пленку, с той только разницей, что упругие силы в пленке зависят от площади ее поверхности (т. е. от того, как пленка деформирована), а силы поверхностного натяжения не зависят от площади поверхности жидкости.

Некоторые жидкости, как, например, мыльная вода, обладают способностью образовывать тонкие пленки. Всем хорошо известные мыльные пузыри имеют правильную сферическую форму – в этом тоже проявляется действие сил поверхностного натяжения. Если в мыльный раствор опустить проволочную рамку, одна из сторон которой подвижна, то вся она затянется пленкой жидкости (рис. 3.5.3).

Таким образом, коэффициент поверхностного натяжения может быть определен как модуль силы поверхностного натяжения, действующей на единицу длины линии, ограничивающей поверхность .

Из-за действия сил поверхностного натяжения в каплях жидкости и внутри мыльных пузырей возникает избыточное давление . Если мысленно разрезать сферическую каплю радиуса на две половинки, то каждая из них должна находиться в равновесии под действием сил поверхностного натяжения, приложенных к границе разреза длиной и сил избыточного давления, действующих на площадь сечения (рис. 3.5.4). Условие равновесия записывается в виде

.

(капля жидкости).

(мыльный пузырь).

Вблизи границы между жидкостью, твердым телом и газом форма свободной поверхности жидкости зависит от сил взаимодействия молекул жидкости с молекулами твердого тела (взаимодействием с молекулами газа (или пара) можно пренебречь). Если эти силы больше сил взаимодействия между молекулами самой жидкости, то жидкость смачивает поверхность твердого тела. В этом случае жидкость подходит к поверхности твердого тела под некоторым острым углом , характерным для данной пары жидкость – твердое тело. Угол называется краевым углом . Если силы взаимодействия между молекулами жидкости превосходят силы их взаимодействия с молекулами твердого тела, то краевой угол оказывается тупым (рис. 3.5.5). В этом случае говорят, что жидкость не смачивает поверхность твердого тела. При полном смачивании , при полном несмачивании .

Капиллярными явлениями называют подъем или опускание жидкости в трубках малого диаметра – капиллярах . Смачивающие жидкости поднимаются по капиллярам, несмачивающие – опускаются.

На рис. 3.5.6 изображена капиллярная трубка некоторого радиуса , опущенная нижним концом в смачивающую жидкость плотности . Верхний конец капилляра открыт. Подъем жидкости в капилляре продолжается до тех пор, пока сила тяжести действующая на столб жидкости в капилляре, не станет равной по модулю результирующей сил поверхностного натяжения, действующих вдоль границы соприкосновения жидкости с поверхностью капилляра: , где , .

При полном несмачивании , и, следовательно, . Уровень несмачивающей жидкости в капилляре опускается ниже уровня жидкости в сосуде, в которую опущен капилляр.

Вода практически полностью смачивает чистую поверхность стекла. Наоборот, ртуть полностью не смачивает стеклянную поверхность. Поэтому уровень ртути в стеклянном капилляре опускается ниже уровня в сосуде.

Изучение свойств воды, текучести, несжимаемости и способов их применения в жизни человека. Создание модели гидравлического экскаватора

Рубрика: Физика

Дата публикации: 29.01.2018 2018-01-29

Статья просмотрена: 5008 раз

Библиографическое описание:

Кучковский, А. Е. Изучение свойств воды, текучести, несжимаемости и способов их применения в жизни человека. Создание модели гидравлического экскаватора / А. Е. Кучковский, О. Ю. Ушакова, Г. И. Спиридонова. — Текст : непосредственный // Юный ученый. — 2018. — № 1 (15). — С. 50-57. — URL: https://moluch.ru/young/archive/15/1102/ (дата обращения: 08.10.2021).

Актуальность. В первую очередь стоит сказать, что жидкости — это то с чем мы постоянно сталкиваемся в процессе нашей повседневной жизни. Даже первое восприятие окружающего мира сводится к тому, что все вокруг состоит из твердых тел и жидкостей. Мы встречаемся с одними видами жидкостей, наблюдаем другие, но при этом каждого из нас иногда посещает мысль о том какими свойствами обладает та или иная жидкость. Самой распространенной и известной жидкостью на планете является вода, она нам всем известна, но в то же время обладает многими очень интересными свойствами, на которые в обыденной жизни мы не обращаем внимания.

Читайте так же:
Расчет откосов насыпи грунта

С древних времен человек использует различные свойства воды в своей жизни, строя каналы, водяные мельницы, водоподъемные колеса для орошения полей и многое другое.

И в наше время очень многие устройства и машины используют в своей работе эти свойства жидкости. Так что же это за свойства, жидкости, которые на протяжении многих веков помогают человеку?

Цель. В этой работе я хотел бы рассмотреть два свойства жидкости, такие как текучесть — способность неограниченное количество раз менять свою форму и не сжимаемость — способность сохранять объем при внешнем воздействии на примере воды и изучить их применение в современном мире. А также сделать модель экскаватора для наглядной демонстрации этих свойств воды.

Задачи:

  1. Изучить теоретический материал о физических свойствах воды
  2. Экспериментальным путем подтвердить изучаемые в данной работе свойства воды
  3. Узнать, как в современном мире используют свойства жидкости
  4. Самостоятельно создать модель экскаватора, работающего за счет изучаемых свойств воды

Вода — удивительное вещество

Вода — одно из самых удивительных веществ в природе.

Чистая вода прозрачна, бесцветна, не имеет вкуса и запаха. Обладает свойством текучести. Принимает форму сосуда. Воду в жидком состоянии практически невозможно сжать. Она может перейти из жидкого состояния в газообразное или твердое и наоборот.

Вода — наиболее распространенное, доступное и дешевое вещество. Именно доступность и незаменимость воды обусловила ее широкое применение в быту, промышленности и сельском хозяйстве, медицине — во всех сферах человеческой деятельности. Трудно вспомнить, где вода не применяется.

Вода — это самая большая и удобная дорога. По ней день и ночь плывут суда, везут разные грузы, пассажиров. Вода ещё и кормит, являясь средой обитания промысловых животных. Вода “добывает” электрический ток, работая на гидроэлектростанциях. В медицине вода — растворитель, лекарственное средство, средство санитарии и гигиены. В сельском хозяйстве вода — «транспортное средство» питательных веществ к клеткам растений и животных, участник процесса фотосинтеза, регулятор температуры живых организмов. Объемы воды, которые затрачиваются для полива сельскохозяйственных растений, при кормлении животных, птицы, не уступают объемам, используемым промышленностью. В быту вода — средство санитарии и гигиены, участник химических реакций, протекающих при приготовлении пищи. Вода моет всех людей, машины, дороги.

Основным свойством жидкости, отличающим её от твердых тел, является способность неограниченно менять форму, даже при сколь угодно малых по силе воздействий, практически сохраняя при этом объём.

В своей работе я хочу изучить два свойства воды: текучесть и не сжимаемость.

Что же такое — текучесть?

Если открыть дома на кухне кран, из него потечет вода. Что значит — потечет? Одним из основных свойств воды является способность изменять форму, не дробясь на части, это и называется текучестью.

Проведем эксперимент, подтверждающий текучесть воды.

Для более удобного наблюдения окрасим воду пищевым красителем. Наполним стакан до половины водой. Вода принимает форму стакана.

Наклоним стакан. Мы видим, что вода изменила форму.

Для второй части эксперимента нам понадобится два разных по форме сосуда. Наполним один сосуд водой и поднимем его над вторым. Попробуем перелить воду из одного сосуда в другой.

Рис. 1. Мы видим, что вода перелилась из первого сосуда во второй и приняла форму второго сосуда

Вывод: вода обладает свойством текучести.

Данным свойством воды люди пользуются с древнейших времен. Еще в древней Римской империи, для обеспечения городов водой люди строили акведуки (от латинских слов aqua — вода и duco — веду) — большие и протяженные системы каналов, с помощью которых вода из рек поступала в город.

Несжимаемость — еще одно увлекательное свойство воды. Что значит — несжимаемость? Есть вещества, при воздействии на которые какой-то силой изменяют свой объем, эти вещества называются сжимаемыми. Вода в отличии от них как бы сильно мы на нее не воздействовали (давили) не меняет свой объем. Это свойство воды и называется несжимаемостью.

Проведем эксперимент, подтверждающий данное утверждение. Для этого нам понадобится медицинский шприц (без иголки). Выдвинем поршень шприца, и наберем полный шприц воздуха, закроем пальцем отверстие для иголки и попробуем надавить на поршень. Мы видим, что у нас получилось задвинуть поршень практически на половину. У нас получилось сжать воздух, находящийся внутри шприца. Т. е. воздух изменил свой объем на 2,5 мл, он стал занимать меньше места в шприце под воздействием силы нашего нажатия.

Теперь наберем полный шприц воды и заткнув отверстие попробуем нажать на поршень. Как бы сильно мы не давили, у нас не получается изменить объем воды. Это и есть несжимаемость. В данном эксперименте мы подтвердили еще одно удивительное свойство воды.

Использование свойств воды в современном мире

Читайте так же:
Сертификат качества грунтовка фасадная

Обладая текучестью, вода легко принимает любую форму, и это позволяет транспортировать воду по трубам от источников воды до крана в доме, и используя свойства не сжимаемости при помощи гидронасосов поднимать воду на самые высокие этажи зданий. В ходе работы я узнал, как устроен гидронасос и где он применяется.

Я посетил насосную многоэтажного здания и посмотрел, как работают насосы водоснабжения и отопления. При помощи этих насосов и системы труб в здание подается питьевая вода и вода в батареи отопления. Благодаря чему в доме есть вода и тепло.

Это самые распространенные в мире способы использования текучести и несжимаемости воды.

Так же не сжимаемость и текучесть жидкости очень широко используется в современных автомобилях, от самых маленьких до больших грузовиков. Только вместо воды в них используется специальная жидкость.

В ходе изучения свойств воды я посетил автомастерскую и познакомился с использованием свойств текучести и не сжимаемости в тормозах автомобиля.

Рис. 5. Гидротормоз автомобиля

Еще один способ использования изучаемых свойств воды который применяется в современном мире — это гидроэлектростанции. Гидроэлектростанции вырабатывают электрическую энергию. Вода протекает через лопасти турбины крутит их. Вращаясь лопасти турбины крутят генератор, который и вырабатывает электрический ток. Гидроэлектростанции являются самым экологически чистым способом получения большого количества электроэнергии.

Рис. 6. Как устроена гидроэлектростанция

Гидроэлектростанции широко применяются в нашей республике для выработки электроэнергии. В Казахстане 18 различных гидроэлектростанций. Гидроэлектростанции бывают большие и малые. Большие гидроэлектростанции есть в Восточно-Казахстанской области на реке Иртыш. Самая большая гидроэлектростанция — Шульбинская. Вырабатываемой ей электроэнергии хватить для целого города. В Алматинской области тоже есть гидроэлектростанции. Если вы когда-нибудь ездили на Капчагайское водохранилище, то наверняка видели большой мост через реку Или. Это и есть Капчагайская гидроэлектростанция. В городе Алматы тоже есть гидроэлектростанции. На реках Большая Алматинка и Малая Алматинка построен каскад из 11 малых гидроэлектростанций, которые вырабатывают электрическую энергию для города. Электрическая энергия, вырабатываемая этими гидроэлектростанциями, освещает в том числе и нашу школу.

Я решил создать действующую модель экскаватора, на примере которой продемонстрировать изучаемые свойства воды. Вся работа по созданию модели состояла из трех основных этапов: разработка модели на бумаге, с использование чертежей; подбор инструментов, необходимых для изготовления модели экскаватора, изучение техники безопасности при работе с ними и подготовка необходимых деталей и экскаватора; сборка и испытание модели.

Этап первый — Разработка модели на бумаге.

В процессе подготовки деталей модели на бумаге я посетил стройку и посмотрел, как работает экскаватор. Были подготовлены чертежи деталей экскаватора, которые нам понадобятся и определен список материалов и деталей для модели. Для изготовления экскаватора мне понадобились — шприцы медицинские объемом 5 и 10 миллилитров, система для капельницы медицинская, винты диаметром 3 миллиметра, гайки и шайбы к ним, доска для изготовления основания, лист пластика для изготовления стрелы экскаватора, подшипник для поворотного механизма, медная проволока толщиной 1 миллиметр, клей, лист пластика толщиной 1 миллиметр для изготовления деталей стрелы, пластиковые хомуты для крепления шприцов.

Рис. 7. Чертеж деталей стрелы экскаватора

После подготовки чертежа, детали стрелы экскаватора были вырезаны из бумаги, и я начал собирать модель из бумаги, для того что бы проверить подходят ли детали друг к другу. Сборка осуществлялась при помощи клея и скрепок.

Этап второй — Подбор инструментов, необходимых для изготовления модели экскаватора, изучение техники безопасности при работе с ними

Убедившись, что все детали стрелы экскаватора подходят к друг другу, я составил список инструментов необходимых для изготовления модели.

Список инструментов: нож канцелярский, пила, линейка, тиски настольные, дрель ручная с различными насадками, ножницы, напильник, пассатижи, клеевой «пистолет», отвёртки.

Подготовив все необходимые инструменты, я приступил к изучению техники безопасности при работе с ними.

Этап третий — Подготовка необходимых деталей экскаватора; сборка и испытание модели

После изучения техники безопасности и работы с инструментами, я приступил к сборке модели экскаватора. Первым шагом разметил места, где будет установлен подшипник для поворотного механизма, и шприцы, управляющие работой экскаватора. При помощи дрели просверлил крепежные отверстия для поворотного механизма и отверстия для крепления шприцов. Прикрепил подшипник, на котором будет вращаться стрела экскаватора к станине. Собрал поворотный механизм при помощи винтов из ранее вырезанных деталей, и прикрепил его к подшипнику. Собрал стрелу из деталей, вырезанных из пластика, и закрепил ее на собранный поворотный механизм. У меня получилась собранная модель экскаватора, стрела, закрепленная на поворотном механизме, установленном на станине.

Я приступил к следующему этапу сборки — установки гидравлической системы управления экскаватором.

На ранее размеченные места на станине я, при помощи пластиковых хомутов прикрепил четыре шприца, для управления экскаватором, один для поворота стрелы, и три бля подъема и спуска трех участков стрелы, и приступил к следующему этапу сборки — установки шприцов, опускающих и поднимающих стрелу. На каждый участок стрелы устанавливается один шприц. При помощи клея я приклеил к основанию шприца два кусочка медной проволоки при помощи которой закрепил корпус шприца к стреле. В поршне шприца просверлил отверстие для проволоки, чтобы прикрепить шприц ко второй части стрелы. После этого этапа у меня получилась собранная модель экскаватора, но шприцы управления и шприцы на стреле не соединены между собой. Для соединения шприцов между собой, я отмерил необходимую длину соединительной трубки и нарезал из медицинской капельницы соединительные трубки. При помощи соединительных трубок соединил шприцы управления со шприцами на стреле экскаватора. На этом этап сборки модели был закончен, и я приступил к следующему этапу — заполнение гидравлической системы экскаватора водой. При помощи шприца я заполнил шприцы управления, трубки и шприцы на стреле экскаватора водой и проверил работу модели. Нажимая на поршни управляющих шприцов, я убедился, что стрела экскаватора и ковш поднимаются опускаются, экскаватор поворачивается в обе стороны.

Читайте так же:
Расход концентрата грунтовки аквастоп

В ходе работы я изучил некоторые свойства воды, и на практике проверил как они работают. Изучил применение этих свойств человеком в повседневной жизни, познакомился с новыми для меня устройствами и инструментами.

Вода это всем известное вещество, обладающее уникальными свойствами, позволяющими использовать ее в самых различных областях. При подготовке своей работы я понял, что даже в известных мне вещах скрыты удивительные секреты.

Работа 1. Изучение физических свойств жидкости

Цель работы

Освоение техники измерения плотности, теплового расширения, вязкости и поверхностного натяжения капельных жидкостей

Общие сведения

В механике жидкости и газа объектом изучения является Жидкость – физическое тело, обладающее текучестью, то есть способностью изменять свою форму под действием сколь угодно малых сил. Таким образом, в это понятие включают Капельные жидкости и газы. Особенностью первых является то, что они ничтожно мало изменяют свой объем при изменении давления, поэтому их обычно считают Несжимаемыми. Однако при рассмотрении отдельных вопросов, например, гидравлического удара, сжимаемость жидкости следует учитывать. Газы, наоборот, обладают большой сжимаемостью: под действием давления могут значительно уменьшаться в объеме, при уменьшении или отсутствии давления – неограниченно расширяться.

В данной работе будут рассмотрены некоторые механические характеристики и физические свойства Капельных жидкостей, которые в дальнейшем будем называть просто Жидкостями.

Таким образом, Жидкостью называют малосжимаемое тело, изменяющее свою форму под действием сколь угодно малых сил.

Плотностью жидкости R [кг/м3] называют массу жидкости, заключенную в единице ее объема. Для однородной жидкости

, (1)

Где M – масса жидкости, [кг]; W – объем, [м3].

Жидкость может изменять свой объем под действием давления либо в результате изменения температуры. В первом случае это свойство жидкости называется Сжимаемостью, во втором – Температурным расширением.

Сжимаемость – это свойство жидкости изменять свой объем под действием давления. С количественной точки зрения это свойство оценивается Коэффициентом объемного сжатия [1/Па], который представляет собой относительное изменение объема, приходящееся на единицу изменения давления:

, (2)

Где DW – изменение объема, [м3]; W – первоначальный объем, [м3]; DP – изменение давления, [Па].

Температурное расширение характеризуется Коэффициентом объемного расширения [1/0С], который представляет собой относительное изменение объема при изменении температуры на 1 градус и постоянном давлении:

, (3)

Где DT – изменение температуры.

Вязкость Представляет собой свойство жидкости сопротивляться сдвигу (скольжению) ее слоев (или частиц). Вязкость приводит к появлению сил внутреннего трения между смежными слоями жидкости, текущими с разными скоростями. Она характеризует степень текучести жидкости, подвижности ее частиц. С повышением давления вязкость жидкости увеличивается. Однако зависимость вязкости от давления существенна только при больших перепадах давления (десятки мегапаскалей). Во всех других случаях влияние давления на вязкость можно не учитывать. При увеличении температуры вязкость жидкости заметно уменьшается, а вязкость газов – растет. Если жидкость не движется, вязкость не проявляется. Поэтому при решении задач равновесия жидкостей её можно не принимать во внимание. При движении же жидкости необходимо учитывать силы трения, которые проявляются вследствие вязкости. Вязкость оценивают Динамическим коэффициентом вязкости M [Па×с], который представляет собой отношение касательного напряжения внутреннего трения T при прямолинейном движении жидкости к градиенту скорости по нормали , и Кинематическим коэффициентом вязкости N [м2/с]. Последний равен отношению динамического коэффициента вязкости M К плотности жидкости R:

. (4)

Таким образом, вязкость зависит от рода жидкости и её температуры и не зависит от условий движения жидкости (не путать с Динамическим коэффициентом турбулентной вязкости!).

Поверхностное натяжение – свойство жидкости образовывать поверхност-ный слой взаимно притягивающихся молекул – характеризуется Коэффициентом поверхностного натяжения S [Н/м], который равен энергии образования единицы площади межфазной поверхности.

Ниже в табл. 1 приведены значения R, , , N, S Для некоторых жидкос-тей при 20 0С.

Технические характеристики и физические свойства жидкостей

,

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector