Реакции гидратации минералов цементного клинкера
Большая Энциклопедия Нефти и Газа
Гидратация — клинкерный минерал
Гидратация клинкерных минералов — это тот же процесс гашения, но сильно растянутый во времени. Куски негашеной извести чрезвычайно пористы, они быстро пропитываются водою, в силу чего гашение протекает практически одновременно во всем объеме материала. Клинкерные минералы плотны, вода может взаимодействовать с ними только на поверхности или проникая по трещинам ( в микрощели); поэтому процесс диспергирования протекает сравнительно быстро только вначале, в период схватывания; в дальнейшем он постепенно замедляется. [1]
Поскольку гидратация клинкерных минералов — экзотермический процесс, то при формировании цементного камня или бетона на его основе происходит выделение тепла. Тепловыделение приводит к разогреву всей массы бетона, что в зависимости от условий строительства может играть положительную и отрицательную роль. При зимнем бетонировании высокое тепловыделение замедляет охлаждение уложенного бетона, способствует развитию процессов гидратации и твердения и, таким образом, полезно. В других условиях тепловыделение приводит к появлению термонапряжений в массе бетона, в результате чего могут возникнуть и развиться трещины, приводящие к разрушению. Тепловыделение зависит в основном от минералогического состава цемента. [2]
Скорость гидратации клинкерных минералов различна. Клинкерные минералы могут быть расположены в порядке уменьшения скорости гидратации в следующий ряд: трехкальциевый алюминат, четырехкальциевый алюмоферрит, трехкальциевый силикат и двухкальциевый силикат / Вследствие слишком быстрой гидратации трехкальциевого алюмината и щелочесодержащих минералов измолотый клинкер обладает способностью при затворении водой схватываться в течение нескольких минут. Этот срок недостаточен для изготовления строительных растворов и бетонов. Тем самым он замедляет ( до 3 — 5 ч) первую стадию процесса твердения — схватывание цемента. Вместе с тем добавка гипса ускоряет процесс твердения цемента, особенно в первые сроки гидратации. [3]
Скорости гидратации клинкерных минералов неодинаковы: наиболее быстро вступает в реакцию трехкальциевый алюминат, нем-много медленнее — четырехкальциевый алюмоферрит, наиболее медленно гидратируется белит. Поэтому цемент, в котором преобладает белит, гидратируется значительно медленнее алитового цемента. [4]
Условия гидролиза и гидратации клинкерных минералов с малым количеством воды, например влагой, адсорбированной из воздуха, отличаются от условий гидролиза и гидратации при затворении цемента большим количеством воды. [5]
При гидролизе и гидратации клинкерных минералов ( 3CaO — SiO2; 2CaO — SiO2 и др.), главным образом трехкальциевого силиката, образуется гидроокись кальция, которая придает смеси щелочную реакцию. [6]
Условия гидролиза и гидратации клинкерных минералов с малым количеством воды, например влагой, адсорбированной из воздуха, отличаются от условий гидролиза и гидратации при затворении цемента большим количеством воды. [7]
Рассмотрим последовательно процессы гидратации клинкерных минералов . [8]
Ниже приведены типичные значения теплоты гидратации чистых клинкерных минералов . Следует отметить, что между тепловыделением и вяжущими свойствами каждого клинкерного минерала зависимости нет. [9]
Для нормальных условий твердения скорости гидратации чистых клинкерных минералов и этих же минералов в портландцементном тесте различаются и зависят от удельной поверхности вяжущего, водовяжущего отношения, наличия или отсутствия добавки гипса, количества алюминатов и алюмоферритов в цементе. В определенной мере это различие может объясняться недоступностью для воды на ранних стадиях гидратации упакованных в гранулах полиминерального клинкера быстрорастворимых и быстрогидратируемых фаз в условиях послойного растворения гранул вяжущего. [10]
Вместе с тем пластифицирующая добавка замедляет гидратацию клинкерных минералов цементов в начальный период. [11]
Как и множество химических реакций, реакция гидратации клинкерных минералов имеет экзотермический характер, при этом цемент выделяет до 120 кал / г. Так как теплопроводность бетона сравнительно низка, то внутри массивных бетонных конструкций гидратация приводит к значительному подъему температуры. В то же время наружная часть бетонного массива теряет некоторое количество тепла, так что устанавливается резкий градиент температуры, что при последующем охлаждении внутренней части может привести к образованию трещин. [12]
Тепловыделение цемента обусловлено тем, что реакции гидратации клинкерных минералов являются экзотермическими. Наиболее интенсивно ПЦ выделяет тепло в ранние сроки твердения, причем большее содержание алита и трехкальциевого алюмината обусловливает большее тепловыделение. Белитовые цементы имеют меньшее тепловыделение. [13]
Согласно данным Лерча и Богга, полная теплота гидратации клинкерных минералов составляет: для C3S — 1 2, C2S — 0 62, С3А — 2 07 и C4AF — 1 кал на 0 01 г соединения. [15]
Реакции гидратации минералов цементного клинкера
Подобно тому, как, например, гранит состоит из определенных природных минералов, так и цементный клинкер представляет собой систему из нескольких искусственных минералов, образовавшихся при обжиге сырьевой смеси. Но в отличие от гранита отдельные составные части клинкера нельзя различить невооруженным глазом, так как клинкер состоит из тонкозернистых кристаллических, а также аморфных фаз.
Примерный минералогический состав портландцементного клинкера:
1. Трехкальциевый силикат (алит)- 3 СаО х SiO2- 40-65%;2. Двухкальциевый силикат (белит)- 2 СаО х SiO2- 15-45%;3. Трехкальциевый алюминат- 3 СаО х Al2O3- 4-12%;4. Четырехкальциевый алюмоферрит- 4 СаО х Al2O3 х Fe2O3- 12-25%.
Суммарное содержание алита и белита обычно находится в пределах 70-80%. Следовательно, в портландцементном клинкере количественно преобладают силикаты кальция. Поэтому данный цемент одно время называли силикатным.
Кроме указанных важнейших минералов в клинкере содержатся в небольших количествах и другие алюминаты и алюмоферриты кальция, а также феррит кальция. Наряду с кристаллическими фазами в клинкере имеется аморфное вещество в виде незакристаллизованного стекла (6-10%). В небольших количествах (не более 5%) в клинкере содержится окись магния, так как карбонат магния- это почти неизбежная природная примесь в известняках. В клинкере иногда встречается свободная окись кальция (до 1%) как результат неполного обжига клинкера, т.е. погрешностей в технологии обжига. Наконец, в клинкере могут быть соединения (до 1-2%), образованные щелочными окислами- окисями натрия и калия. Эти окислы переходят в клинкер из сырьевых материалов и золы твердого топлива.
Зная свойства клинкерных минералов, в частности величину тепловыделения при взаимодействии с водой, и минералогический состав данного клинкера, можно в первом приближении выявить основные особенности цемента, получаемого из этого клинкера.
Трехкальциевый силикат (алит) химически очень активен в реакции с водой. Об этом свидетельствует величина его тепловыделения при гидратации, особенно за первые трое суток. Он обладает способностью быстро твердеть и при твердении развивает большую прочность. Поэтому высокое содержание трехкальциевого силиката имеет важное значение для качества цемента. Высокомарочные и быстротвердеющие цементы должны содержать большое количество алита.
Двухкальциевый силикат (белит) значительно менее активен, на что указывает не только тепловой эффект гидратации, но и медленный ход тепловыделения: за трое суток выделяется только 10% от всего тепла гидратации. Твердеет он очень медленно. Но на протяжении нескольких лет прочность при благоприятных для твердения условиях неуклонно возрастает.
Трехкальциевый алюминат является наиболее активным клинкерным минералом; у него наибольшее тепловыделение, причем за трое суток выделяется не менее 80% от тепла гидратации. Трехкальциевый алюминат очень быстро твердеет. Однако продукт твердения имеет низкую прочность.
Четырехкальциевый алюмоферрит по величине тепловыделения при реакции с водой занимает промежуточное положение между трехкальциевым и двухкальциевым силикатом. Четырехкальциевый алюмоферрит твердеет значительно медленнее, чем трехкальциевый силикат, но быстрее, чем двухкальциевый. Прочность тоже выше, чем у продукта гидратации двухкальциевого силиката.
Приведенные краткие характеристики клинкерных минералов дают некоторое представление о влиянии их количественного содержания в клинкере на свойства данного цемента. Так, если требуется получить быстротвердеющий цемент, нужный, например, в производстве сборных железобетонных изделий и конструкций для сокращения сроков их изготовления, то применяют клинкер с повышенным содержанием трехкальциевого силиката и трехкальциевого алюмината. Эти минералы в сумме должны составлять не менее 65-70% от веса клинкера. Для бетонных работ в зимнее время тоже удобен цемент с относительно большим количеством трехкальциевого силиката и трехкальциевого алюмината. Такой цемент отличается высокой экзотермией. Поэтому бетон в какой-либо конструкции, защищенной от потери тепла, может успешно твердеть и при отрицательной температуре воздуха.
В строительстве часто требуется цемент с умеренной экзотермией преимущественно для массивных бетонных гидротехнических сооружений. Известно, что при большом тепловыделении твердеющего цемента бетон сильно расширяется во внутренних частях массива и меньше в наружных, которые естественно охлаждаются воздухом или водой. Объемные деформации, возникающие при неравномерном расширении и сжатии бетона, вызывают образование трещин и часто приводят к аварийному разрушению сооружений. Поэтому в массивных бетонных конструкциях (например, гидротехнических сооружений) не применяют цементы, отличающиеся большим тепловыделением. Для получения цемента с умеренной экзотермией клинкер должен содержать относительно небольшое количество трехкальциевого силиката и трехкальциевого алюмината.
На свойства цемента помимо указанных важнейших клинкерных минералов влияют также содержащиеся в нем окиси магния, кальция, калия и натрия.
В правильно изготовленном и охлажденном клинкере значительная часть свободной кристаллической окиси магния (периклаза) растворена в стекловидной фазе в виде очень мелких кристаллов; мелкие же кристаллы, притом находящиеся в тонкомолотом цементе, успевают гидратироваться в той стадии, когда цемент еще не затвердел. В этот период увеличение объема отдельных составляющих цемента не вызывает разрушения массы, сохранившей некоторую пластичность. Поэтому современная технология почти полностью исключает вредное влияние окиси магния на цемент при ее содержании в клинкере до 5%.
Свободная окись кальция присутствует в нормальных клинкерах, как указывалось, в незначительных количествах и притом в виде очень мелких частиц. Чем мельче частицы, тем они быстрее гидратируются. При таких условиях процесс гидратации свободной извести в бетоне обычно не представляет опасности.
Щелочные окислы присутствуют в клинкере в разных химических соединениях, например в виде алюмината калия К2О х Аl2О3.
Если в каменных заполнителях бетонов имеется опаловидный кремнезем, т.е. водная двуокись кремния (SiO2 х nH2O) в аморфном виде, то присутствие щелочных окислов в цементе может вызвать разрушение бетона. Содержание этих окислов в клинкере составляет в среднем около 0,5%.
Причины такого разрушения заключаются в следующем. Щелочные окислы реагируют с двуокисью кремния, находящейся в каменных заполнителях в деятельном, активном реакционноспособном виде, образуя водорастворимые силикаты калия или натрия. Они в свою очередь взаимодействуют с гидроокисью кальция цементного камня с образованием кальциевых солей и тем самым нарушают прочность и стойкость слоя цементного камня, находящегося на границе с зернами заполнителя. В связи с этим в методы испытания заполнителей для бетона введено определение содержания опаловидного кремнезема.
Таким образом, выбор цементов для различных областей применения следует сообразовывать с минералогическим и элементарным химическим составом клинкера.
Необходимо более подробно рассмотреть вопросы, касающиеся взаимодействия минералов цементного клинкера с водой. Тогда станет еще более ясно, как именно надо учитывать минералогический состав клинкера при выборе цементов для изготовления бетонов различного назначения.
Азбука бетона
Трудно точно сказать, где и когда появился бетон, так как начало его зарождения уходит далеко в глубь веков. Очевидно лишь то, что он не возник таким, каким мы его знаем, а, как большинство строительных материалов, прошел длинный путь развития. Наиболее ранний бетон, обнаруженный археологами, можно отнести к 5600 г. до н.э. Он был найден на берегу Дуная в поселке Лапински Вир (Югославия) в одной из хижин древнего поселения каменного века, где из него был сделан пол толщиной 25 см. Бетон для этого пола приготавливался на гравии и красноватой местной извести. История бетона неразрывно связана с историей цемента . Древнейшими вяжущими веществами, используемыми человеком, являлась глина и жирная земля, которые после смешивания с водой и высыхания приобретали некоторую прочность. По мере развития и усложнения строительства возрастали требования, предъявляемые к вяжущим веществам. Более чем за 3 тыс. лет до н.э. в Египте, Индии и Китае начали изготавливать искусственные вяжущие, такие, как .
Материалы для строительства фундамента
Арматура Если нужно армировать какую-либо железобетонную конструкцию, как правило, используют стержневую и проволочную арматуру гладкого и периодического профиля и канаты из низкоуглеродистых и низколегированных сталей. Эти конструкции для большей прочности закаляют с прокатного нагрева и подвергают холодной или теплой деформации. Железобетонные конструкции армируются проволокой, отдельными стержнями, сетками и пространственными каркасами (рис. 1). Бетон Бетоном называется сложный материал, который получается вследствии формования и твердения определенным образом подобранной бетонной смеси, которая обеспечивает самому бетону все необходимые характеристики: прочность, водонепроницаемость, морозостойкость и др. Как правило, бетонная смесь состоит из следующих ингредиентов: вяжущее вещество, вода, заполнители и специальные добавки. Бетонная смесь должна соответствовать основным характеристикам материала: иметь хорошую удобоукладывае-мость, соответствующую используемому способу уплотнения, и при транспортировке и укладке сохранять од .
Трест «Востокхимзащита» выполняет работы в области промышленного и социального строительства: устройство минеральных оснований, защита металлоконструкций и технологического оборудования, нанесение полимерных систем, отделка и ремонт.
Технологическая служба предприятия использует самые передовые строительные материалы и технологии, гарантирующие высокий уровень качества и долговечный срок службы.
Состав портландцементного клинкера.
Минералогический состав портландцементного клинкера.
- Химический состав портландцементного клинкера дан в таблице 1.5.1.
- Основные минералы, которые может содержать портландцементный клинкер, даны в табл. 1.5.2.
Портландцементный клинкер. Клинкерные минералы не являются чистыми соединениями, а представляют собой смеси, содержащие в незначительном количестве компоненты других минералов в виде смешанных кристаллических соединений; это относится и к остальным химическим примесям клинкера, которые не могут образовать самостоятельных фаз. Поэтому, чтобы четко отличать чистые соединения от клинкерных минералов, Териебом в 1897 г. дал основным минералам клинкера C3S и C2S названия «алит» и «белит» и, еще не зная их состава, исследовал под микроскопом отличия между ними.
Алит. Белит.
Белит.
Потери при прокаливании 0,5 — 3 | |||
SiO2 | 16-26 | CaO | 58-67 |
Al2O3 | 4-8 | MgO | 1-5 |
Fe2o3 | 2-5 | K2O+Na2O | 0-1 |
Mn2O3 | 0-3 | SO3 | 0,1-2,5 |
TiO2 | 0-0,5 | P2O5 | 0-1,5 |
При дальнейшем медленном охлаждении из β-C2S может образоваться стабильная ɣ-форма. Этот процесс протекает с увеличением объема на 10% и при определенных условиях может привести к рассыпанию клинкера. Быстрое охлаждение клинкера и наличие примесей препятствует переходу белита в гидравлически инертную ɣ-фазу, снижающую его качество.
Белит твердеет значительно медленнее алита, но в конце кондов достигает такой же прочности, как алит.
Если в клинкере глинозема содержится меньше, чем оксида железа (в молях), то оба компонента, вступая в соединение с известью, образуют алюмоферрит кальция (см, табл. 1.5.2.) —смешанно-кристаллическую фазу с конечным членом 2CaO•Fe2O3, где Fe может непрерывно замещаться Al. Этот смешанно-кристаллический ряд сохраняет стабильность до молярного отношения Al2O3:Fe2O3=2:1; однако в портланд-цементном клинкере, содержащем только соединения, богатые известью, ряд завершается уже при отношении 1:1. Если в клинкере преобладает глинозем, то его избыток сверх указанного отношения (как это имеет место в формуле 4CaO•Al2O3•Fe2O3) образует трехкальцисвый алюминат, богатый известью.
Трехкальциевый алюминат очень легко вступает в реакцию с водой, однако не имеет ясно выраженных гидравлических свойств и совместно с силикатами повышает начальную прочность цемента. Алюмоферрит кальция мало способствует гидравлическому твердению цемента.
Как уже указывалось щелочи только тогда попадают в клинкерные фазы, когда количество SO3, содержащееся в клинкере, недостаточно для полного образования щелочных сульфатов. Щелочи входят в состав всех клинкерных фаз, однако преимущественно содержатся в алюмииатной фазе в виде смешанных кристаллов, причем состав, указанный в формуле табл. 1.5.2, может быть получен только в присутствии SiO2.
Гидратация цемента
Гидратация цемента — химическая реакция цемента с водой с образованием кристаллогидратов. [2] В процессе гидратации жидкий или пластичный цементный клей превращается в цементный камень. Первая стадия этого процесса называется загустеванием, или схватыванием, вторая — упрочнением, или твердением. [3]
Содержание
- 1 Химические реакции
- 2 Изменения физических свойств
- 3 Примечания
- 4 Литература
- 5 Ссылки
Химические реакции
Безводные минералы клинкера при реакции с водой превращаются в гидросиликаты, гидроалюминаты и гидроферраты кальция. Все реакции являются экзотермическими, то есть протекают с выделением теплоты. На скорость гидратации влияют: степень помола цемента и его минеральный состав, количество воды, которой замешивается цемент, температура, введение добавок. [5] Степень гидратации зависит от водоцементного соотношения, и достигает своего максимального значения только через 1—5 лет. [6] [
1] Степень гидратации определяется различными способами: по количеству Ca(OH)2, по тепловыделению, по удельному весу цементного теста, по количеству химически связанной воды, по количеству негидратированного цемента, [
2] либо косвенно по показателям прочности цементного камня. [7] Продукты гидратации различаются по прочности. Основными носителями прочности являются гидросиликаты кальция. [6] В процессе гидратации клинкеров C3S и C2S помимо гидросиликатов кальция образуется гашёная известь Ca(OH)2, сохраняющаяся в цементном камне и препятствующая коррозии стали внутри цементного камня. [8]
Уравнения реакций для четырёх основных клинкерных минералов выглядят следующим образом [9] :
Для трёхкальциевого силиката 3 CaO ⋅ SiO 2 (сокращённо C 3 S
):
<3CaO.2SiO2.3H2O>+ <3Ca(OH)2>+ 502>>>»> 2 ( 3 CaO ⋅ SiO 2 ) + 6 H 2 O ⟶ 3 CaO ⋅ 2 SiO 2 ⋅ 3 H 2 O + 3 Ca ( OH ) 2 + 502 <3CaO.2SiO2.3H2O>+ <3Ca(OH)2>+ 502>>>»/> Дж/г
Для двукальциевого силиката 2 CaO ⋅ SiO 2 (сокращённо C 2 S
):
<3CaO.2SiO2.3H2O>+ <3CaO.2SiO2.3H2O>+
Для трехкальциевого алюмината 3 CaO ⋅ Al 2 O 3 (сокращённо C 3 A
):
<3CaO.Al2O3.6H2O>+ 867>>>»> 3 CaO ⋅ Al 2 O 3 + 6 H 2 O ⟶ 3 CaO ⋅ Al 2 O 3 ⋅ 6 H 2 O + 867 <3CaO.Al2O3.6H2O>+ 867>>>»/> Дж/г
Для четырёхкальциевого алюмоферрита 4 CaO ⋅ Al 2 O 3 ⋅ Fe 2 O 3 (сокращённо C 4 AF
):
<3CaO.Al2O3.6H2O>+ <3CaO.Fe2O3.6H2O>+ 419>>>»> 4 CaO ⋅ Al 2 O 3 ⋅ Fe 2 O 3 + 2 Ca ( OH ) 2 + 10 H 2 O ⟶ 3 CaO ⋅ Al 2 O 3 ⋅ 6 H 2 O + 3 CaO ⋅ Fe 2 O 3 ⋅ 6 H 2 O + 419 <3CaO.Al2O3.6H2O>+ <3CaO.Fe2O3.6H2O>+ 419>>>»/> Дж/г
Изменения физических свойств
При смешивании цемента и воды цементные частицы окружаются водой, которая составляет 50—70 объёмных процентов смеси. В результате химической реакции гидратации начинается образование иглообразных кристаллов. Спустя 6 часов образуется достаточное количество кристаллов и между цементными частицами формируются пространственные связи. Так происходит загустевание (схватывание) цементной смеси. [3] Процесс схватывания, вероятно, обеспечивается избирательной гидратацией клинкерных минералов C3A и C3S, а также развитием оболочек вокруг цементных зёрен и взаимной коагуляцией составных частей цементного теста. [11] Через 8—10 часов объём цементной смеси заполняет скелет иглообразных кристаллов, образованный преимущественно продуктами гидратации алюминатов C3A, поэтому такая структура называется алюминатной. С этого момента начинается застывание и набор прочности, которые связаны с формированием силикатной структуры, образующейся в процессе гидратации клинкерных минералов C3S и C2S. Результатом реакции силикатов и воды становятся очень малые кристаллы, объединяющиеся в гомогенную тонкопористую структуру, которая и определяет итоговую прочность цементного камня. Примерно через сутки силикатная структура начинает вытеснять алюминатную, а спустя 28 суток — полностью вытесняет её. [5] На практике формирование рыхлой алюминатной структуры из гидросиликата кальция в процессе схватывания отрицательно влияет на прочностные характеристики цементного камня. Поэтому в цементный клинкер вводится гипс, количество которого ограничивается допустимой концентрацией ангидрида серной кислоты SO3 в цементе по весу. [
3] Гипсовая добавка замедляет образование гидроалюмината кальция и каркас гидратированного цементного теста формируется за счёт гидросиликата кальция. [11]
Гидратация цемента в период схватывания характеризуется выделением теплоты: в начале схватывания происходит быстрый подъём температуры, а в конце схватывания наблюдается температурный максимум. Скорость схватывания находится в зависимости от температуры окружающей среды. При низких температурах схватывание замедляется. При повышении температуры скорость схватывания увеличивается, однако при значениях температуры выше 30 °C может наблюдаться обратный эффект. [11]
Для полной гидратации цементного зерна необходимо количество воды, составляющее 40 % от его массы. При этом из указанного количества воды 60 % (или 25 % от массы цемента) будут химически связаны с цементом, а 40 % (или 15 % от массы цемента) останутся в порах геля. [12] Средняя величина удельного веса продуктов гидратации в насыщенном водой состоянии составляет 2,16. [13] Та часть воды (25 % от массы цемента), которая вступает в химическую реакцию с цементом, претерпевает объёмную контракцию (сжатие) в процессе реакции, составляющую примерно 25 % от её объёма. В итоге образующийся цементный камень частично уменьшается в объёме. Этот процесс называется усадкой, а величина уменьшения объёма — объёмом усадки. [12]
При полной гидратации цементного клея объём пор будет составлять примерно 28 [15] —30 [12] % от объёма образующейся структуры геля. При этом величина пористости геля в основном не зависит от водоцементного отношения смеси и степени гидратации, а является характерным показателем для марки цемента. [16] Размер гелевых пор составляет примерно 1,5—2 [15] (1—3 [17] ) нм в диаметре. [
4] Часть общего объёма цементного теста, которая не заполнена продуктами гидратации, образует взаимосвязанную систему капиллярных пор, беспорядочно распределённых по всему цементному камню. Капиллярная пористость цементного камня находится в прямой зависимости от водоцементного отношения смеси и в обратной зависимости от степени гидратации. Чем больше величина водоцементного отношения, тем больше капиллярных пор. В то же время по мере роста степени гидратации цемента будет уменьшаться объём капиллярных пор. Размер капиллярных пор составляет примерно 1,27 мкм. [19]
Структурно продукты гидратаци представляет собой гель, а сам процесс гидратации классифицируется как гелеобразование. [5] В процессе гидратации значительно увеличивается площадь поверхности твёрдой фазы цементного геля, что влечёт за собой повышение адсорбции свободной воды. При этом сохраняется расход воды в реакциях гидратации. Следствием этих двух процессов становится самовысушивание — явление уменьшения относительной влажности в цементном тесте. Самовысушивание снижает степень гидратации, поэтому для нормального протекания процессов твердения цементного теста необходимо поддерживать уровень влажности, как одно из условий нормального набора прочности. Процесс самовысушивания также компенсируется избытком воды при затворении цементной смеси (при значениях водоцементного отношения 0,5 и более). [20]