Tpc-setka.ru

ТПЦ Сетка
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расчет устойчивости откосов грунтовых плотин

Расчет устойчивости откосов грунтовых плотин

РАСЧЕТ УСТОЙЧИВОСТИ ОТКОСОВ ПО СПОСОБУ НАКЛОННЫХ СИЛ ВЗАИМОДЕЙСТВИЯ

Согласно п. 5.10* настоящего СНиП в числе рекомендуемых методов расчета устойчивости откосов грунтовых плотин названы методы, оперирующие с расчлененной на вертикальные элементы призмой обрушения и с произвольной или круглоцилиндрической поверхностью сдвига, удовлетворяющие условиям равновесия в предельном состоянии.

В качестве таковых могут быть использованы методы, основанные на гипотезе наклонных сил взаимодействия между элементами призмы обрушения.

Угол наклона к горизонту b этих сил может быть определен из условий равновесия призмы обрушения в предельном состоянии, которое достигается пропорциональным изменением характеристик прочности грунтов от расчетных значений tgj, с до критических tgjk, сk.

При произвольной поверхности сдвига для оценки устойчивости призмы обрушения сопоставляют проекции равнодействующих активных сил FE и сил сопротивления RE на направление сил взаимодействия. При круглоцилиндрической поверхности сдвига можно сопоставлять как моменты этих равнодействующих Fo, Ro относительно оси поверхности сдвига, так и их проекции. Критерием устойчивости призмы обрушения является соотношение

(1)

где ‑ коэффициенты сочетаний нагрузок, условий работы, надежности по ответственности сооружения.

Откос устойчив, если обеспечена устойчивость призмы обрушения с наиболее опасной поверхностью сдвига.

Проекции равнодействующих определяют из условия равновесия элементов призм обрушения по формулам (см. схему):

(2)

где Q = qdx равнодействующая активных сил, действующих на элемент призмы обрушения;

d — угол отклонения силы Q от вертикали;

а — угол наклона элемента поверхности сдвига к горизонту;

С = cds сила сцепления, действующая на элемент поверхности сдвига.

Схема сил, действующих на элемент призмы обрушения

Моменты равнодействующих определяют по формулам:

(3)

где r — радиус поверхности сдвига;

b — возвышение точки приложения силы Q над поверхностью сдвига.

Угол b в обоих случаях допустимо определять по приближенной зависимости

(4)

Лекция 6. Устойчивость грунтовых откосов

Массив грунта при определенных условиях может потерять устойчивость и в результате этого перейти из состояния статического равновесия в состояние движения. Такое состояние грунтового массива называется оползнем. Принятая классификация оползней основана на схемах потери устойчивости грунтового массива. Различают следующие виды оползней: оползни вращения; оползни скольжения; оползни разжижения(рис 6.1).

Рис. 6.1. Виды оползней: а – оползень вращения; б – оползень скольжения (пристенный оползень); 1 – поверхности скольжения в теле оползня; 2 – стационарная плоскость скольжения на границе оползня с подстилающим устойчивым массивом

Для оползней вращения характерна форма потери устойчивости грунтового массива в виде движения по криволинейной поверхности с вращением. Оползни скольжения называют также пристенными оползнями, так как их движение при нарушении равновесия происходит по заранее известным плоскостям, являющимся плоскостями контакта грунтового массива с устойчивыми горными породами. Оползнями разжижения называют грязевые потоки разжиженного водой грунта по выработанным руслам рек и тельвегам, например, селевые потоки. Механика грунтов изучает первые два типа оползней. Нарушение равновесия массива грунта может происходить внезапно со сползанием значительных масс грунта. Основными причинами нарушения равновесия массива грунта является увеличение нагрузок, действующих на массив, и уменьшение внутреннего сопротивления грунтового массива. Увеличение нагрузок может происходить по следующим причинам: возведение сооружений на откосах; водонасыщение массива грунта или подвешивание капиллярной влаги при понижении уровня грунтовых вод; увеличение градиента гидравлического напора и связанных с этой величиной фильтрационных сил. Фильтрационными силами называют силы давления и трения грунтового потока по поверхности минеральных частиц грунта. Интенсивности этих сил на единицу объема грунта могут быть вычислены по формулам:

Читайте так же:
Сертификат качества грунтовка хс 059

, (6.1)

где H – гидравлический напор, выраженный в пьезометрических единицах, например, в метрах водяного столба.

Уменьшение сопротивления массива грунта может происходить в результате: разрушения естественных упоров, например, в результате подмыва основания откоса; уменьшения эффективного трения при возрастании порового давления; уменьшения сил сцепления при увлажнении и набухании грунтов. Ниже приводятся инженерные решения задач, связанных с определением устойчивости свободных откосов и склонов. Откос отличают от склона большим углом наклона свободной поверхности к горизонтали. По различным литературным источникам откосом называют склон с углом наклона свободной поверхности к горизонтали более 30°. Нормативная классификация грунтовых массивов, подразделяющая их на склоны и откосы отсутствует. В связи с эти приведенное выше определение откоса является условным.

1. Устойчивость откоса из идеально сыпучего грунта. Откос из идеально сыпучего грунта имеет свободную поверхность, наклоненную к горизонтальной плоскости под углом a (рис. 6.2).

Элементарная частица грунта на свободной поверхности испытывает силу тяжести G, которую можно разложить на нормальную N и касательную T к наклонной поверхности компоненты:

(6.2)

Элементарная частица грунта удерживается на наклонной поверхности силой трения, равной произведению нормальной компоненты силы тяжести на коэффициент трения. Обозначим коэффициент трения как тангенс угла внутреннего трения j. Тогда из уравнения равновесия проекций всех сил на наклонную плоскость получим:

;

(6.3)

Полученный результат можно обобщить в виде следующего определения: угол наклона к горизонтальной плоскости свободной поверхности откоса, сложенного идеально сыпучим грунтом, равен углу внутреннего трения этого грунта. Этот результат можно использовать в качестве теоретической основы экспериментального метода по определению угла внутреннего трения сыпучего грунта.

Сдвигающей силой является касательная составляющая силы тяжести Tсд,i = Ti. Удерживающими силами являются сила трения и сила сцепления по поверхности скольжения:

где li – длина дуги поверхности скольжения в пределах i -го объема грунта;
ci и ji – сцепление и угол внутреннего трения грунта в пределах дуги li.

Условием равновесия по поверхности скольжения АС, пересекающей откос, является равенство нулю суммы моментов сдвигающих и удерживающих сил относительно центра О круглоцилиндрической поверхности скольжения:

. (6.6)

Для анализа устойчивости грунтового массива вместо уравнения (6.6) чаще всего используют выражение для коэффициента устойчивости, равное отношению момента удерживающих сил к моменту сдвигающих сил:

Читайте так же:
Сколько времени сохнет грунтовка под покраску стен

(6.7)

В формулах (6.6) и (6.7) угол a отсчитывается от горизонтали и считается положительным при повороте ее на острый угол до совмещения с касательной против хода часовой стрелки. При отрицательном угле a касательная составляющая силы тяжести и соответствующий ей момент являются удерживающими, что автоматически учитывается формулами (6.6) и (6.7). Предел суммирования по i n определяет количество элементарных объемов грунта, на которые разделяется верхняя часть откоса, отделенная от остального массива поверхностью скольжения. С увеличением n увеличивается точность расчетов по формулам (6.6) и (6.7). Формулы (6.6) и (6.7) являются не конечными, а промежуточными результатами. Решение задачи состоит в отыскании минимального коэффициента устойчивости откоса h для всех возможных траекторий поверхностей скольжения. Для упрощения решения поставленной задачи существуют следующие рекомендации. Предполагается, что центры возможных круглоцилиндрических поверхностей скольжения лежат на прямой (рис. 6.4), соединяющей вершину откоса В с точкой в глубине массива, отстоящей от основания откоса (точка А) по горизонтали на 4,5 Н и от верха откоса (точка В) по глубине на 2 Н. Варьируя на указанной линии положением центров поворота Оj, строят график зависимости коэффициента устойчивости откоса hj от положения центра поворота Оj. Решением задачи (рис. 6.4) является минимальный коэффициент устойчивости откоса hj,min.

4. Расчет устойчивости пристенного оползня. Как уже отмечалось, предельное равновесие пристенного оползня реализуется по заранее известным плоскостям скольжения (рис. 6.8), каковыми являются плоскости контакта грунтового массива с коренными породами.

Решение задачи сводится к определению величины оползневого давления Еi. Массив грунта разбивается вертикальными плоскостями, перпендикулярными чертежу, на элементарные призмы с приведенным весом Gi. Под приведенным весом понимается собственный вес грунта с нагрузкой на его поверхности. В пределах элементарной призмы поверхность скольжения должна быть представлена плоскостью (без переломов и изгибов). Предполагается, что силы оползневых давленийЕi наклонены к боковым граням элементарных призм грунта под углом внутреннего трения ji. Плоскость скольжения элементарной призмы наклонена к горизонтали под углом ai. Решение задачи сводится к определению оползневого давленияЕi по известному давлениюЕi-1 и приведенному весуGi. Для этого составляется и решается уравнение предельного равновесия на площадке скольжения. Приведем силы, действующие на элементарную призму (рис. 6.8), к их проекциям на вертикальную Y и горизонтальную X оси:

(6.8)

Приведем систему сил (6.8) к их проекциям на нормаль к плоскости скольжения N и касательную T, лежащую в этой плоскости:

(6.9)

Условие предельного равновесия на площадке скольжения будет иметь вид:

;


(6.10)

Полученное решение дляЕi используется для анализа устойчивости пристенного оползня следующим образом.

Для первой призмы в верхней части оползня принимается Е = 0. Опреде­ляется по формуле (6.10) Е1. Указанная процедура продолжается до тех пор, пока не будет вычислено Еn – оползневое давление на свободной поверхности последней призмы нижней части оползня. Если Еn больше нуля, оползень счи­тается неустойчивым. Если Еn меньше нуля, устойчивость оползня обеспечена.

Читайте так же:
Расстояние от откоса до отвала грунта

Расчет устойчивости откосов

Вы будете перенаправлены на Автор24

Угол естественного откоса

Угол естественного откоса – это угол, при котором неукрепленный каким-либо образом откос песчаного грунта может сохранять равновесие или угол наклона поверхности грунта в свободно насыпанном состоянии (без уплотнения) к горизонтальной плоскости.

Следует отметить, что определение угла естественного откоса грунта имеет важное значение при проектировании различных грунтовых сооружений, например:

  • насыпные плотины;
  • намывные плотины;
  • котлованы;
  • дамбы и т.д.

Значения угла естественного откоса вычисляются также для проведения мероприятий по их укреплению.

Сущность расчета

Под откосом понимается поверхность, образованная в ходе хозяйственной деятельности человека. Такая поверхность ограничивает природный горизонтальный массив либо искусственно возведенную выемку (либо насыпь).

Склоном обычно называют откос, образованный природным путем, т.е. поверхность, ограничивающую массив грунта естественного сложения. При неблагоприятных сочетаниях разнородных факторов массив грунта, ограниченный склоном или откосом может перейти в неустойчивое состояние и потерять равновесие.

К основным причинам потери устойчивости грунтовых откосов относят:

  • устройство непозволительно крутого откоса или подрезка склона, находившегося в состоянии, приближающемся к предельному;
  • увеличение внешних нагрузок (возведение зданий или сооружений в непосредственной близости, складирование материалов вблизи откосов и т.д.);
  • неправильное определение расчетных характеристик грунта или снижение его сопротивления сдвигу вследствие повышения влажности;
  • воздействие гидродинамического давления, сейсмических сил или динамических воздействий различной природы (движение техники, забивка свай, работы промышленного оборудования и т.д.).

Для обеспечения устойчивости откосов в первую очередь необходимо назначить угол его заложения, т.е. угол между горизонтальной площадкой и наклонной поверхностью. Одним из наиболее распространенных способов расчета угла заложения и оценки устойчивости откосов насыпей и естественных склонов является метод круглоцилиндрических поверхностей скольжения. Сущность данного метода заключается в получении данных о форме поверхностей скольжения при оползнях вращения опытным путем.

Готовые работы на аналогичную тему

Главная задача расчета заключается в определении коэффициента устойчивости откоса выемки (или насыпи) для максимально опасной поверхности скольжения.

Основные параметры расчета

В случаях, когда сопротивление частиц сдвигу определяется исключительно силами трения, угол естественного откоса совпадает с углом внутреннего трения (φ = φ0). Однако, в реальном проектировании сопротивление грунта сдвигу зависит от множества факторов (например, от зацепления частиц).

Таким образом, величина силы трения будет определяться по формуле:

φ = φт + φз + φс + …

φт – составляющая, привносимая за счет сил трения, φз – то же, за счет зацепления, φс – то же, за счет среза частиц.

Следует заметить, что составляющая φт в большей мере зависит от минерального состава грунта, а также от наличия поверхностных пленок. Составляющая φз зависит от окатанности и формы частиц грунта.

Читайте так же:
Рецепты грунтовки текстильной куклы

Угол естественного откоса является легко определяемой и весьма удобной для последующих расчетов характеристикой прочности несвязных грунтов. Вышеописанный способ актуален для определения величины внутреннего трения сыпучих грунтов (например, чистых песков). Следует заметить, что при помощи такой методики можно определить угол внутреннего трения лишь приближенно. В чистых песках величина угла внутреннего трения приближенно равна углу естественного откоса.

На практике угол естественного откоса определяют на приборе УВТ, состоящем из металлического столика-поддона, резервуара и обоймы. Поддон закрепляется на трех опорах и перфорируется небольшими отверстиями для водонасыщения грунта. Шкала, предусмотренная в центре столика, имеет деления от 5 до 45 градусов. В соответствии с этой шкалой и определяется угол естественного откоса.

Если требуется определить угол естественного откоса грунта в воздушно-сухом состоянии, на столик устанавливают обойму, в которую насыпается песок до полного заполнения. После заполнения песок незначительно уплотняется. После этого обойму вертикально поднимают и по вершине образовавшегося конуса берут отсчет по вышеупомянутой шкале.

Данный опыт повторяют трижды, после чего определяют среднее арифметическое значение. Расхождение между повторениями не должно превышать 1 градус.

Если требуется определить угол естественного откоса грунта в водонасыщенном состоянии, то после заполнения обоймы грунтом резервуар заполняют водой. После полного насыщения пробы определяется угол естественного откоса вышеописанным методом.

На значение угла естественного откоса несвязных грунтов влияет однородность гранулометрического состава. Например, монодисперсные грунты, как правило, обладают большими значениями φ, чем полидисперсные грунты с аналогичным минеральным составом. Так происходит потому, что в смеси небольшие частицы заполняют образующиеся промежутки между крупными, что облегчает их смешение по поверхностям откосов.

Большое влияние на трение также оказывает количество воды в грунте (ее присутствие снижает значение φ). В песчаных грунтах повышенная влажность значительно снижает угол внутреннего трения.

Проектирование и строительство земляных плотин

Книга содержит краткое обобщение трудов известных гидротехников России и собственных изданий автора. Изложен перечень документов по расчету и строительству земляных плотин, в том числе возведения сухим способом и намывом. По ней удобно произвести квалифицированное проектирование и строительство земляных плотин, не прибегая к помощи специализированных организаций. Книгу можно использовать для обучения техников и инженеров в неспециализированных институтах.

Оглавление

  • 1. Назначение и конструкции земляных плотин
  • 2. Классификация гидротехнических сооружений по капитальности
  • 3. Типы земляных плотин
  • 4. Условия работы земляной плотины
  • 5. Дренаж плотин и расчет фильтрации земляных плотин и основания
  • 6. Устойчивость откосов плотины

Приведённый ознакомительный фрагмент книги Проектирование и строительство земляных плотин предоставлен нашим книжным партнёром — компанией ЛитРес.

6. Устойчивость откосов плотины

Минимально возможный профиль земляной плотины представляет собою трапецию с откосами, обычно не круче 1: 1,5. Вес плотины такого профиля настолько значителен, что о сдвиге ее под действием горизонтальных сил от давления воды верхнего бьефа не может быть речи. Поэтому расчет земляной плотины на сдвиг не производят.

Читайте так же:
Сквозняки при грунтовке стен

Неустойчивыми могут оказаться откосы плотины как сами по себе, так и в связи с недостаточной устойчивостью основания.

1. В насыпях из сыпучих (несвязных) грунтов, лишенных сцепления и обладающих лишь внутренним трением, если отсутствуют фильтрационные силы, устойчивый откос представляет собою плоскость, наклоненную к горизонту под углом φ, где φ — угол внутреннего трения или естественного откоса. Всякий откос с углом наклона θ ¿ φ является неустойчивым.

Для песчаных грунтов естественной влажности углы внутреннего трения варьируют от 25 0 для песков до 43 0 для гравелистых грунтов в зависимости от плотности.

2. Связные грунты (глина, суглинки) кроме внутреннего трения частиц (угла φ) располагают силами сцепления с, измеряемые в единицах давления (паскалях и др.).

В литературе [2] приведен график приближенного метода расчета для однородных земляных откосов из связных грунтов, предполагающий поверхность сползания откоса круглоцилиндрической. По этому графику, зная объемный вес грунта Υ1 (т/м 3 ), угол внутреннего трения φ сцепление с (т/м 2 ), и высоту откоса h (м), можно определить угол безопасного откоса Θ.

Рис. 6.1. График расчета устойчивости откосов для однородных связных грунтов [2].

Вычисленное значение заложения откоса m по графику для плотин 1-го и 2-го класса следует увеличить на коэффициент безопасности по СНиП.

3. Как правило, откосы земляной плотины не являются однородными по составу; даже в плотине из однородного грунта часть последнего, лежащая ниже кривой депрессии, имеет иные физические свойства, чем вышележащий сухой грунт: иной объёмный вес, иное сцепление, наличие фильтрационных сил. Кроме того, в большинстве случаев основание плотины может деформироваться вместе с откосами.

Для таких случаев приходится пользоваться при расчете общим методом круговых (цилиндрических) поверхностей скольжения (метод К. Терцаги) [3, 2]. Этот метод сводится к вычислению отношения момента силы веса отсека к моменту сил сцепления относительно произвольно выбранного центра кривой скольжения. По этому отношению определяется коэффициент устойчивости откоса с учетом влияния фильтрационных сил.

Вычисления продолжаются с многократно переносимым центром скольжения, из которых выбирается наиболее опасный центр с минимальным коэффициентом устойчивости.

Расчеты громоздки и требуют много времени для вычисления.

Для проведения расчета необходимо знать фактические величины сцепления, трения, объемного веса участков грунтов, которые определяются лабораторными испытаниями, а также фильтрационных сил, вычисляемых по построенной фильтрационной сетке.

В настоящее время расчет устойчивости выполняется по разработанным программам для ЭВМ. Эти расчеты выполняются специализированными проектными организациями (ОАО «Гидропроект» и др.). Расчетную схему устойчивости приводим ниже. [2].

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector