Tpc-setka.ru

ТПЦ Сетка
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расчет устойчивости низового откоса грунтовой плотины

НЕСТАЦИОНАРНАЯ АНИЗОТРОПНАЯ ФИЛЬТРАЦИЯ И ЕЕ ВЛИЯНИЕ НА УСТОЙЧИВОСТЬ ОТКОСОВ ГРУНТОВОЙ ПЛОТИНЫ

    Маргарита Белецкая 4 лет назад Просмотров:

1 Его используют более ста известных компании-изготовителей аппаратных средств индустрии автоматизации. CoDeSys может генерировать машинный код для большинства распространенных процессоров (Motorola, Hitachi, Intel(в т.ч ), Siemens). CoDeSys включает богатый набор средств отладки и сопровождения (явное обьявеление переменных. мониторинг/запись/фиксация значений переменных. онлайн коррекция кода. эмуляция). CoDeSys также обладает достаточно широкими графическими возможностями, которые по функциональности не уступает простейшим SCADA- системам. Список литературы: 1. Руководство пользователя по программированию ПЛК в CoDeSys V Смоленск: ПК Пролог, с. 2. Петров И.В. Программируемые контроллеры. Стандартные языки и приемы прикладного проектирования/ И.В. Петров; под редакции профессора В.П. Дьяконова. М.: СОЛОН-Пресс, с. 3. Христенин, Дж.Х. Знакомство со стандартом на языки программирования PLC IEC (МЭК ) [Электронный ресурс]/дж.х. Христенин. [2004]. Режим доступа: НЕСТАЦИОНАРНАЯ АНИЗОТРОПНАЯ ФИЛЬТРАЦИЯ И ЕЕ ВЛИЯНИЕ НА УСТОЙЧИВОСТЬ ОТКОСОВ ГРУНТОВОЙ ПЛОТИНЫ Мемарианфард Хамед Есфандиар Научный руководитель: Анискин Н.А. Московский государственный строительный университет, г. Москва В некоторых случаях большой интерес представляет решение задач неустановившейся фильтрации в грунтовых откосах, плотинах и их основаниях. Изменение уровней бьефов вызывает изменение положения депрессионной поверхности и параметров фильтрационного потока (фильтрационных градиентов, скоростей, расхода). Наибольший интерес при решении фильтрационных задач при изменении уровней бьефов представляет определение положения депрессионной поверхности и гидродинамических сил в откосах плотин, во многом определяющих их устойчивость [3]. С целью анализа влияния анизотропии на характер фильтрационного режима при возможной сработке водохранилища проведены численные исследования неустановившейся фильтрации в грунтовой плотине в плоской постановке. В качестве объекта для нестационарной задачи рассматривалась однородная плотина из песка с дренажной призмой при следующих параметрах: высоте плотины 24,0 м; заложении верхового откоса m=3; заложении низового откоса m=2; начальной глубине верхнего бьефа H 1 =22,0 м; постоянной глубине воды нижнего бьефа Н нб =3,0 м. Для численных исследований используется программа «FILTR» на основе метода конечных элементов в локально-вариационной постановке [2]. Задача 121

2 IV Всероссийская научно-практическая конференция «Научная инициатива иностранных студентов и аспирантов российских вузов» решалась для двух вариантов фильтрационных характеристик грунта: для варианта изотропного грунта с К х /К у =1 и анизотропного с К х /К у =4. Рассматривалась разная скорость сработки водохранилища: v=1 и v=5. Такая достаточно большая скорость сработки как правило, характерна для небольших по объему водохранилищ или аварийных ситуаций. С точки зрения устойчивости откоса (что рассмотрено ниже) это более неблагоприятное условие. Результаты решения данной нестационарной задачи при скорости сработки v=1 в виде положения депрессионной поверхности и распределения фильтрационных напоров на моменты времени, соответсвующие начальному моменту сработки (водохранилище наполнено) и глубинам водохранилища равным 15, 11 и 7 метрам представлены на рис. 2. Полученные результаты позволяют проследить динамику изменений положения депрессионной поверхности, градиентов и скоростей фильтрационного потока, происходящих при сработке водохранилища. При нестационарной изотропной фильтрации до отметки 4,0 метра со скоростью v=1 (рис. 1) происходит снижение депрессионной кривой. Это приводит к появлению участка, имеющего уклон в сторону верхнего бьефа, и кривая депрессии приобретает выпуклую форму. При этом в глубине верхового клина получена область с более высоким, чем у поверхности откоса, напором. Фильтрационная скорость вдоль верхнего откоса направлена в сторону верхнего бьефа. Рисунок 1. Неустановившаяся фильтрация в изотропной земляной плотине при скорости сработки водохранилища 1. В отличие от изотропной нестационарной фильтрации, при анизотропной нестационарной фильтрации с одинаковой скоростью сработки (v=1 ) и сработке водохранилища до отметки 4,0 метра происходит более равномерное распределение по профилю плотины действующего на плотину напора, и кривая депрессии приобретает почти горизонтальную форму. Распределение фильтрационных градиентов в верховом клине более равномерное. При этом у поверхности верхового откоса получены более низкие градиенты, чем в случае изотропной нестационарной фильтрации. 122

3 Увеличение скорости сработки до 5 значительно изменяет фильтрационные режимы плотины. При тех же глубинах водохранилища получены более высокие положения депрессионной поверхности, наблюдается увеличение градиентов фильтрации у поверхности откоса. Полученные решения позволяют проследить динамику изменений положения депрессионной поверхности, градиентов и скоростей фильтрационного потока, происходящие при сработке водохранилища. Используемый метод конечных элементов позволяет получить подробную картину изменения положения депрессионной кривой, фильтрационных градиентов и скоростей при снижении уровня воды водохранилища. Это необходимо для оценки фильтрационной прочности элементов грунтовых плотин и проверки устойчивости откосов конструкции. Эта работа тоже посвящена оценке влияния фильтрационной анизотропии на устойчивость откосов грунтовых плотин. Очевидно, что изменение (положения депрессионной поверхности и распределение по профилю градиентов и скоростей фильтрации), вызванное учетом анизотропных свойств, может повлиять на устойчивость откосов плотины[4]. Для оценки этого влияния были проведены расчеты устойчивости низового откоса плотины по методу круглоцилиндрических поверхностей обрушения. Была составлена программа «Откос-F», в которой предусмотрен учет гидродинамической фильтрационной силы, вызванной движением фильтрационного потока, определяемой в каждом из отсеков в виде [1]: x Wi = γ h b J (1) bi где: воды воды взв i h взв i γ — объемный вес воды; — высота слоя грунтовой воды в отсеке; — ширина отсека; J — средний фильтрационный градиент в отсеке. i Величины средних фильтрационных градиентов в расчетных отсеках определялись из решения фильтрационной задачи. Результаты расчетов устойчивости верхнего откоса с учетом фильтрационной силы для вариантов со скоростью сработки v=1, полученные по программе Откос-F даны на рис.2 и в табл.1. Таблица 1. Сравнение результатов расчетов устойчивости верхового откоса нестационарной фильтрационной задачи Уровень верхнего бьефа Коэффициент запаса устойчивости верхового откоса (К з ) Изотропная фильтрация Анизотропная фильтрация Скорость Скорость Скорость Скорость сработки 1 сработки 5 сработки 1 сработки 5 УВБ=22м 1,89 1,89 1,96 1,96 УВБ=15м 1,85 1,71 1,94 1,75 УВБ=11м 1,74 1,67 1,9 1,71 УВБ=7м 1,67 1,61 1,88 1,68 123

Читайте так же:
Ремонт квартир грунтовка покраска

4 IV Всероссийская научно-практическая конференция «Научная инициатива иностранных студентов и аспирантов российских вузов» Скорость сработки =1 Рисунок 2.Результаты расчета устойчивости верхового откоса с учетом фильтрационной силы по программе «Откос-F» На моменты времени, соответствующие глубине водохранилища 15,0 м, 11,0 м и 7,0 м при скорости сработки водохранилища 1 анизотропия грунтов приводит к увеличению коэффициента запаса верхового откоса до 14% по сравнению с изотропной фильтрацией. Таким образом, в случае изотропной нестационарной фильтрации ухудшается устойчивость откоса. Учет анизотропия может увеличить устойчивость верхового откоса при нестационарной фильтрации. Изменение скорости сработки до 5,0 качественно не меняет картину: учет анизотропии несколько повышает коэффициенты запаса устойчивости. Минимальные значения коэффициента запаса соответствуют глубине водохранилища

7,0 (примерно 1/3 водохранилища наполнено). Увеличение скорости сработки значительно уменьшает коэффициент устойчивости верхового откоса. Учет фильтрационной гидродинамической силы также уменьшает эту величину и необходим при оценке устойчивости откоса. Выводы: 1. Рассмотрено влияние анизотропии при возможной сработке водохранилища. Учет анизотропных свойств грунта приводит к более равномерному распределению 124

5 градиентов фильтрации и уменьшению их величины по сравнению с изотропной задачей. При увеличении скорости сработки водохранилища возрастают градиенты фильтрации и, соответственно, фильтрационные гидродинамические силы. 2. Результаты фильтрационных расчетов использованы при анализе влияния фильтрационной анизотропии и сработки водохранилища на коэффициенты запаса устойчивости откосов, определяемые по методу круглоцилиндрических поверхностей обрушения. При сработке водохранилища учет анизотропии способствует увеличению коэффициента запаса устойчивости верхового откоса плотины примерно на 10-14% по сравнению с изотропной фильтрацией. Учет фильтрационной гидродинамической силы необходим, так как снижает коэффициент запаса на 5-10%. Устойчивость низового откоса наоборот, снижается в случае анизотропной фильтрации на величину 5-15% в зависимости от параметров плотины и коэффициента анизотропии. Список литературы: 1. Гольдин А.Л., Рассказов Л.Н. Проектирование грунтовых плотин. М.: Издво АСВ, Рассказов Л.Н., Орехов В.Г., Анискин Н.А. и др. Гидротехнические сооружения. М.: Изд-во АСВ, Шестаков В.М. Некоторые вопросы моделирования неустановившейся фильтрации. Сб. «Вопросы фильтрационных расчетов гидротехнических сооружений», ВОДГЕО, 1956, Reinius E., The stability of the upstream slope of earth dams, Stockholm, Sherard, J.L., et al., Filter for Silts and Clay, ASCE, GT6, Vol. 110, June ИНЖЕНЕРНЫЕ МЕТОДЫ ОПРЕСНЕНИЯ И ОБЕССОЛИВАНИЯ МОРСКОЙ ВОДЫ Мемарианфард Хамед Есфандиар Научный руководитель: Бестужева А.С. Московский государственный строительный университет, г. Москва Обессоливание и обезвоживание воды Что такое обессоливание воды? Жесткая вода не только невкусная, но и может стать причиной многих заболеваний человека, поэтому пить ее людям не стоит. Очистка воды от растворов солей щёлочноземельных металлов называется ее умягчением. Таким процессом как обессоливание занимаются все современные городские службы жилищно-коммунального хозяйства, так как жесткость питьевой воды это важный показатель, заслуживающий пристального внимания и исследований. Связано опреснение воды с жесткостью этой жидкости, т.е. совокупности физических и химических свойств воды, зависящих от соотношения в ней солей металлов. Соответственно с увеличением содержания таких солей вода становится более «жесткой» и ее опреснение осуществляется труднее. 125

Грунтовая дамба — расчет установившейся фильтрации

Грунтовая дамба — расчет установившейся фильтрации Инженерное руководство Глава 32 Обновлено: 03/2018 Программа: МКЭ — Фильтрация Файл: Demo_manual_32.gmk Введение Данный пример иллюстрирует применение

Ландшафтная архитектура и зеленое строительство | Totalarch

Вы здесь

Строительство плотин

Устройство водоема связано со строительством ряда гидротехнических сооружений, объединяемых общими условиями совместной работы и местоположением и называемых гидроузлом. Так, при строительстве водоема с целью благоустройства территории основными сооружениями гидроузла можно назвать собственно водоем, плотину, при необходимости дамбы, водосбросное сооружение и водоспуск (водовыпуск). Основную роль играет плотина, обеспечивающая регулирование стока (аккумуляцию воды в водоеме). Для того чтобы правильно запроектировать и построить плотину, необходимо предварительно провести ряд инженерных изысканий, результаты которых уточнят место расположения плотины, надежность сопряжения плотины с дном и берегами водотока, возможные потери на фильтрацию, приток воды поверхностного и грунтового стока и др.

С этой целью проводят следующие виды инженерных изысканий: топографические, геологические, гидрологические, гидрогеологические, завершающиеся камеральными работами и лабораторными анализами собранных в полевых условиях материалов (рис. 6.1).

Рис. 6.1. Графические материалы изысканий (по И.М. Шармановскому): а — водосборная площадь; б — план проектируемого водоема; в — геологический профиль по створу плотины; г — литологическая колонка буровой скважины N°1; д — условные обозначения грунтов; е — компрессионная кривая

Створом плотины называется предполагаемое место расположения плотины на водотоке. Наиболее желательным местом расположения створа является то место, в котором горизонтали поверхности земли близко подходят друг к другу, берега крутые, а выше по течению горизонтали «раздвигаются», образуя расширение значительного объема. Это место и будет являться наиболее удобным для строительства плотины исходя из соображений топографии. Если просмотреть весь водоток (а речь идет, в первую очередь, о водоемах на местном стоке), то станет ясно, что удобных мест имеется не одно, а несколько. Поэтому приходится решать вопрос с привлечением других материалов изысканий.

На основе топографических изысканий определяют объем чаши водоема при разных уровнях воды.

Определенную конкретизацию могут внести материалы геологических изысканий, показывающих, в каком створе грунты более прочные, более надежные, обладающие слабыми фильтрационными свойствами. Место расположения таких фунтов и определит предпочтительный створ будущей плотины. Изменяя место расположения створа, необходимо считаться с тем, что при движении вверх по водотоку одновременно изменяется (уменьшается) площадь бассейна (водосборной площади), а следовательно, и объем годового поверхностного стока.

Читайте так же:
Ролакс грунтовка гф 021

В результате гидрологических изысканий определяют площадь водосбора и различные характеристики стока и, в первую очередь, объем годового стока. При этом могут возникнуть различные соотношения между потенциальным объемом чаши водоема и объемом годового стока, которые помогут выбрать оптимальный створ, тип регулирования стока, а при большом объеме стока — решить вопрос о создании не одного, а целого каскада водоемов, расположенных на одном и том же водотоке.

Результаты гидрогеологических изысканий позволяют выявить наличие водоносных горизонтов, их расположение и величину подземного стока, определяющую возможное подземное питание водоема.

По результатам всех этих изысканий и лабораторных исследований выбирается окончательное расположение одного или нескольких гидроузлов. В последнем случае необходимо считаться с тем, что экономическая эффективность создания отдельных гидроузлов каскада будет различной и предпочтение следует отдать наиболее эффективному, если его объем и площадь акватории будут отвечать заданным требованиям.

Основным сооружением гидроузла является плотина. Плотины классифицируются по отношению к пропуску стока, основным используемым материалам, особенностям конструкции, способу возведения и по другим признакам.

По отношению к пропуску стока плотины подразделяют на глухие, водосливные и фильтрующие (наподобие бобровых деревянно-веточных плотин).

По основным используемым материалам плотины могут быть грунтовые (однородные и неоднородные), каменные, каменно-набросные, габионные, каменно-земляные, намывные, из армированного грунта, деревянные, ряжевые, бетонные, железобетонные и др.

По особенностям конструкции плотины из бетона и железобетона можно подразделить на гравитационные, контрфорсные, арочные и др.

По способу возведения земляные плотины можно подразделить на насыпные с уплотнением, намывные, взрывонабросные и др. ***

***В данной статье рассматриваются земляные насыпные глухие плотины IV класса, которые наиболее часто применяются на объектах ландшафтной архитектуры (СНиП 2.06.05-84 «Плотины из грунтовых материалов»).

Земляные насыпные плотины по конструкции тела и плотинные водоемы по уровням воды характеризуются следующими основными терминами и показателями: тело плотины, гребень плотины, высота плотины, ширины плотины понизу, ширина противофильтрационной призмы понизу, верховой (мокрый) откос, низовой (сухой) откос; нормальный подпорный уровень (НПУ), форсированный подпорный уровень (ФПУ), уровень мертвого объема (УМО) (рис. 6.2).

Рис. 6.2. Виды земляных насыпных плотин: а — однородная; б, в — неоднородные; г — с экраном из негрунтовых материалов; д — с фунтовым ядром (вертикальным или наклонным); е — с негрунтовой диафрагмой; ж — с грунтовым экраном; з — продольный разрез плотины; 1 — крепление откосов; 2 — тело плотины; 3 — кривая депрессии; 4 — дренаж; 5 — верховая грунтовая противофильтрационная призма; 6 — низовая призма; 7 — переходный слой фунта; 8 — центральная фунтовая противофильтрационная призма; 9 — зуб; 10 — экран из негрунтовых материалов; 11 — верховая призма; 12 — грунтовое ядро; 13 — инъекционная (цементационная) висячая завеса; 14 — противофильтрационная диафрагма; 15— шпунт или стенка; 16 — фунтовый экран; 17 — гребень; НПУ — нормальный подпорный уровень; УНБ — уровень воды в нижнем бьефе; h —высота плотины; b — ширина плотины понизу; b um — ширина противофильтрационной призмы понизу; b up — ширина плотины по гребню; m h — коэффициент верхового откоса; m t — коэффициент низового откоса; L пл — длина плотины по гребню

Земляные плотины классифицируются по конструкции поперечного профиля, противофильтрационных устройств и способу возведения.

По конструкции поперечного профиля земляные плотины подразделяются на следующие типы: из однородного грунта, из неоднородного грунта, с экраном из негрунтовых материалов, с экраном из грунта, с ядром, с диафрагмой (стенкой, шпунтом).

По конструкции противофильтрационных устройств в основании земляные плотины подразделяются на следующие типы: с понуром, с зубом, с инъекционной завесой, с диафрагмой (стенкой, шпунтом).

По способу возведения земляные плотины подразделяются на следующие типы: с механическим уплотнением грунта; без механического уплотнения грунта (с отсыпкой пионерным способом насухо или с отсыпкой в воду).

При возведении плотин следует руководствоваться следующими соображениями. Земляные плотины, дамбы, противофильтрационные устройства напорных сооружений в виде экранов, ядер и понуров можно возводить отсыпкой грунта как в сухих условиях, так и в воду.

При устройстве противофильтрационных устройств наиболее пригодны глинистые грунты с коэффициентом фильтрации K p > 0,05. Допускается применять также искусственную грунтовую смесь, содержащую глинистые, песчаные, дресвяные и крупнообломочные грунты. Состав смеси должен быть проверен в производственных условиях или на опытных отсыпках.

Крутизну откосов плотин и дамб при проектировании и строительстве определяют исходя из физико-механических характеристик грунтов; действующих на откосы сил (собственной массы, влияния воды, сейсмических, динамических, внешних нагрузок на гребне и откосах и др.); высоты плотины; производства работ и условий эксплуатации.

Ориентировочные значения заложений откосов (коэффициента заложения откоса m) земляных насыпей плотин из глинистых и песчаных грунтов при наличии в основании грунтов с прочностью, сопоставимой или больше, чем в теле плотины, можно принять по табл. 6.1.

Таблица 6.1. Ориентировочные значения коэффициента заложения m

Высота плотины, мЗначения коэффициента заложения m откосов плотины
верхового (мокрого)низового (сухого)
Меньше 52,00. 2,501,50. 1,75
5. 102,25 . 2,751,75. 2,25
10. 152,50. 3,002,00. 2,50
15. 503,00. ..4,002,50. 4,00
Больше 504,00-5,004,00. 4,50

Для более точного определения коэффициентов заложения устойчивых откосов можно воспользоваться графиком, составленным для различных грунтов. Откосы грунтовых плотин могут иметь переменное заложение, что экономит объем грунта, используемого при возведении плотины. При этом коэффициент заложения т уменьшается в части, примыкающей к гребню плотины, и увеличивается при приближении к основанию.

Читайте так же:
Сколько нужно грунтовки для покраски крыла

На откосах средних и высоких плотин рекомендуется устраивать бермы, которые увеличивают устойчивость откосов, облегчают поверхностное водоотведение, и улучшают производственные и эксплуатационные условия. На верховом откосе бермы служат упором крепления и облегчают условия осмотра и ремонта. На низовом откосе бермы используют для служебного проезда, предотвращения размыва водами поверхностного стока (с устройством кюветов или лотков), устройства сооружений для контроля за кривой депрессии и управления задвижкой донного водоспуска. Бермы обычно располагают через 10. 15 м по высоте при ширине 3 м (для проезда) и не менее 1. 2 м, если проезд не предусмотрен.

Гребень плотины при минимальной ширине 4,5 м должен возвышаться как над нормальным подпорным уровнем (НПУ), так и над форсированным подпорным уровнем (ФПУ). Превышение отметки гребня плотины над отметкой уровня воды определяют для двух расчетных случаев: над отметкой НПУ и над отметкой ФПУ расчетной вероятности превышения по формуле

где h н — высота наката на откос ветровой волны, м; ∆h — высота ветрового нагона волны, м; а — запас по высоте плотины, равный или больше 0,5 м.

Высоту наката ветровой волны на откос hн определяют по специальным методикам, изложенным в справочниках проектировщика гидротехнических сооружений.

Высоту ветрового нагона ∆h ориентировочно можно определить по формуле

где w — скорость ветра расчетной вероятности превышения на высоте 10 м над уровнем воды, м/с; D — протяженность охваченной ветром акватории, м; g — ускорение силы тяжести, м/с2; Н — расчетная глубина, м; α — угол между продольной осью водоема и направлением ветра.

Одним из важнейших элементов насыпной земляной плотины является дренаж тела плотины, который проектируется и стоится для отвода воды, фильтрующейся через тело и основание плотины; предотвращения выклинивания фильтрационного потока на низовой (сухой) откос; снижения уровня кривой депрессии для повышения устойчивости низового откоса; повышения устойчивости верхового откоса при быстром понижении уровня; отвода воды профильтровавшейся через экран, тело и ядро плотины.

Рис. 6.3. Конструкции основных видов дренажа плотин в русле (а — дренажный банкет; б — наслонный дренаж) и на берегу (в — трубчатый дренаж; г — горизонтальный дренаж; д. ж — комбинированные виды дренажа): 1 — кривая депрессии; 2 — обратный фильтр; 3 — дренажный банкет; 4 — наслонный дренаж; 5 — труба (дрена); 6 — отводящий канал; 7 — отводящая труба; 8 — дренажная лента; d f — максимальная глубина промерзания; m t — коэффициент низового откоса; b b — ширина банкета поверху; n s — превышение верха призмы над уровнем воды в нижнем бьефе

Рис. 6.4. Типы креплений верхового откоса плотин (размеры указаны в м): а — одиночное мощение; б — двойное мощение; в — наброской камня в плетневые клетки; г — хворостяной выстилкой; д — железобетонными плитами; 1 — слой камня толщиной 0,3. 0,5 м; 2 — песчано-гравийная подготовка толщиной 0,1 м; 3 — колья диаметром 5. 8 см, длиной 1,5 м; слой гравия или щебня толщиной 0,10. 0,15 м

Дренажные устройства в зоне низового (сухого) откоса могут иметь различную конструкцию (рис. 6.3). Выбор конструкции, в первую очередь, зависит от типа плотины, ее размеров и используемых грунтов. Дренажный банкет обычно устраивают на русловых участках плотины. Превышение гребня дренажного банкета над максимальным уровнем воды в нижнем бьефе определяют расчетом, но оно должно быть не менее 0,5 м. Ширину поверху принимают из условий производства работ и конструкции, но она не должна быть менее 1 м. Наслонный дренаж устраивают на участках плотины, перекрывающих затопляемую пойму. Толщину наслонного дренажа с обратным фильтром определяют из условий производства работ, но она должна быть не меньше величины t, определяемой по формуле

где d s, 85 — диаметр частиц, масса которых вместе с массой более мелких фракций составляет 85 % от массы всего дренажного слоя, м; t f — толщина обратного фильтра, м.

Превышение гребня наслонного дренажа h s над максимальным уровнем воды в нижнем бьефе принимают, как и для дренажного банкета.

Трубчатый дренаж из бетонных или асбестоцементных труб (перфорированных) с заделанными и незаделанными стыками обсыпают обратным фильтром. Диаметр дренажных труб определяют гидравлическим расчетом, но принимают не менее 200 мм. Толщина каждого слоя обратного фильтра должна быть не менее d s, 85 . но не менее 200 мм. Верховой (рис. 6.4) и низовой откосы крепятся различными способами.

Источник: Строительство и эксплуатация объектов ландшафтной архитектуры. Теодоронский В.С.

Коэффициент устойчивости откоса и склона по нормам СП

Нормирование коэффициент устойчивости откосов и склонов приведено в следующих нормативных документах:

  • СП 22.13330.2016 Основания зданий и сооружений. Актуализированная редакция СНиП 2.02.01-83*;
  • СП 116.13330.2012 Инженерная защита территорий, зданий и сооружений от опасных геологических процессов. Основные положения. Актуализированная редакция СНиП 22-02-2003;
  • ОДМ 218.2.078-2016 Методические рекомендации по выбору конструкции укрепления откосов земляного полотна автомобильных дорог общего пользования.

Выделим положения данных нормативных документов, которые касаются коэффициента устойчивости откоса и склона.

Согласно СП 22.13330.2016:

п.5.1.9 Проверку оснований по несущей способности следует проводить в случаях, если:

б) сооружение расположено на откосе или вблизи откоса;

Проверку оснований по несущей способности в случаях, приведенных в перечислениях а, б и в, следует проводить с учетом конструктивных мероприятий, предусмотренных для предотвращения смещения проектируемого фундамента.

Если проектом предусматривается возможность возведения сооружения непосредственно после устройства фундаментов до обратной засыпки грунтом пазух котлованов, следует проводить проверку несущей способности основания, учитывая нагрузки, действующие в процессе строительства.

Читайте так же:
Рецепты грунтовок для живописи

п.5.7.2 Расчет оснований по несущей способности проводят исходя из условия

где F — расчетная нагрузка на основание, кН, определяемая в соответствии с требованиями п.5.2 СП 22.13330.2016;

Fu — сила предельного сопротивления основания, кН;

γc — коэффициент условий работы, принимаемый:

      • для песков, кроме пылеватых — 1,0;
      • для песков пылеватых, а также глинистых грунтов в стабилизированном состоянии — 0,9;
      • для глинистых грунтов в нестабилизированном состоянии — 0,85;
      • для скальных грунтов:
      • невыветрелых и слабовыветрелых — 1,0
      • выветрелых — 0,9
      • сильновыветрелых — 0,8;

γn — коэффициент надежности по ответственности, принимаемый равным 1,2; 1,15 и 1,10 соответственно для сооружений геотехнических категорий 3, 2 и 1.

Примечание — В случае неоднородных грунтов средневзвешенное значение принимают в пределах толщины b1+0,1b (но не более 0,5b) под подошвой фундамента, где b — сторона фундамента, м, в направлении которой предполагается потеря устойчивости, а b1 =4 м.

Согласно СП 116.13330.2012:

п.5.1.6 При выборе защитных мероприятий и сооружений и их комплексов следует учитывать виды возможных деформаций склона (откоса), уровень ответственности защищаемых объектов, их конструктивные и эксплуатационные особенности.

Виды противооползневых и противообвальных сооружений и мероприятий следует выбирать на основании расчетов общей и местной устойчивости склонов (откосов), т.е. устойчивости склона (откоса) в целом и отдельных его морфологических элементов, данных мониторинга.

п.5.2.1 Противооползневые и противообвальные сооружения и их конструкции проектируются по методу предельных состояний. При этом расчеты производятся по двум группам предельных состояний, которые включают:

первая (полная непригодность сооружения к дальнейшей эксплуатации):

      • расчеты общей прочности и устойчивости системы сооружение — грунтовый массив (откос, склон);
      • расчеты прочности и устойчивости отдельных элементов сооружения, разрушение которых приводит к прекращению эксплуатации сооружения;
      • расчеты перемещений сооружений и конструкций, от которых зависит прочность или устойчивость сооружения в целом, а также прочность или устойчивость объектов на защищаемой территории и др.;

вторая (непригодность к нормальной эксплуатации):

      • расчет оснований, откосов, склонов и элементов конструкции, разрушение которых не приводит все сооружение в непригодное состояние, на местную прочность;
      • расчеты по ограничению перемещений и деформаций сооружений, прилегающих территорий и объектов на них расположенных;
      • расчеты по образованию или раскрытию трещин и строительных швов.

5.2.2 Расчет противооползневых и противообвальных сооружений, проектируемых откосов и склонов производится исходя из условия

где F— расчетное значение обобщенного силового воздействия на сооружение или его конструктивные элементы (сила, момент, напряжение), определяемое в соответствии с СП 20.13330, деформации (смещения) или другие параметры, по которым производится оценка предельного состояния;

Ψ — коэффициент сочетания нагрузок, принимающий значения:

При расчетах по предельным состояниям первой группы:

      • для основного сочетания эксплуатационного периода Ψ = 1,0;
      • то же, для строительного периода и ремонта Ψ = 0,95;
      • для особого сочетания нагрузок, в том числе сейсмической нагрузки на уровне проектного землетрясения (ПЗ) годовой вероятностью 0,01 Ψ =0,95;
      • прочих нагрузок годовой вероятностью 0,001 и максимального уровня расчетного землетрясения (МРЗ) Ψ =0,90.

При расчетах по предельным состояниям второй группы на основное сочетание нагрузок Ψ = 1,0;

R — расчетное значение обобщенной несущей способности, прочности, деформации (смещения) или другого параметра, устанавливаемого соответствующими нормами проектирования в зависимости от типа конструкции и используемых материалов с учетом коэффициентов надежности по материалу γm и (или) грунту γg ;

γn — коэффициент надежности по ответственности сооружения:

При расчетах по предельным состояниям первой группы в зависимости от уровня ответственности, согласно ГОСТ Р 54257:

При расчетах по предельным состояниям второй группы γn = 1,00.

При расчетах устойчивости склонов, сохраняемых в естественном состоянии, γn принимается как для сооружения или территории, которые могут перейти в непригодное состояние при разрушении склона.

При расчетах природных склонов γn =1,0;

γd — коэффициент условий работы, учитывающий характер воздействий, возможность изменения свойств материалов со временем, степень точности исходных данных, приближенность расчетных схем, тип сооружения, конструкции или основания, вид материала и другие факторы; устанавливается в диапазоне

нормами проектирования отдельных видов сооружений.

п.5.2.3 Расчет устойчивости проектируемых склонов и откосов в соответствии с зависимостью 5.1 допускается выполнять только для простейших форм поверхности скольжения, отделяющей призму обрушения от неподвижного массива грунта (в виде отрезка прямой или окружности). В этом случае зависимость 5.1 записывается в виде:

где kst = γn ·Ψ/γd — нормированное значение коэффициента устойчивости склона (откоса);

kst — расчетное значение коэффициента устойчивости, определяемое как отношение удерживающих сил (моментов) R , действующих вдоль линии скольжения, к сдвигающим силам (моментам) F .

В общем случае расчеты устойчивости выполняются при произвольных формах поверхности скольжения. При этом условие 5.1 принимает вид

В этом случае под коэффициентом устойчивости kst понимают число, на которое следует разделить исходные прочностные характеристики грунта tgφ и c , чтобы ограниченный данной пробной поверхностью скольжения массив пришел в состояние предельного равновесия.

При этом, соотношение между нормальными σn и касательными τnt напряжениями по всей поверхности скольжения, соответствующее предельному состоянию призмы обрушения, отвечает условию

где φI = arctg(tgφ /kst) и cI =c/kst — значения угла внутреннего трения и удельного сцепления грунта, при которых наступает сдвиг грунта, соответственно.

Коэффициент устойчивости склона (откоса) находят как минимальное значение kst по всем возможным пробным поверхностям скольжения.

Нахождение коэффициента устойчивости склона (откоса) может производиться как с использованием традиционных методов теории предельного равновесия (с разбиением призмы оползания на отсеки или без оного), так и упругопластическими расчетами методом конечных элементов с использованием метода снижения прочностных характеристик.

Читайте так же:
Силк пластер грунтовка расход

Согласно ОДМ 218.2.078-2016:

п.6.4.2 В общем случае, надежность конструкции по критериям прочности и устойчивости считается обеспеченной при выполнении условия

где F — расчетное значение обобщенного силового воздействия (сила, момент, напряжение), деформации или другого параметра, по которому производится оценка предельного состояния;

R — расчетное значение обобщенной несущей способности, деформации или другого параметра конструкции;

ηс — коэффициент сочетания нагрузок для основного сочетания нагрузок и воздействий в период нормальной эксплуатации — 1,00; то же — для периода строительства и ремонта — 0,95;

γf — коэффициент надежности по нагрузке по таблице 5;

γc — коэффициент условий работы, учитывающий характер воздействий, возможность изменения свойств материалов во времени, степень точности исходных данных и прочие факторы, при расчете элементов на нагрузки строительного периода принимается γc=1,0, при расчете на нагрузки эксплуатационного периода γc=1,15;

γn — коэффициент надежности по ответственности сооружения (при расчетах по предельным состояниям I группы γn=1,15, II группы γn=1,0).

Коэффициенты надежности следует принимать с учетом требований ГОСТ 27751, СП 20.13330.2011, СП 38.13330.2012, СП 58.13330.2012, СП 116.13330. 2012.

Указанные значения коэффициентов надежности могут быть изменены для случаев установленных нормативными документами на проектирование отдельных видов элементов конструкций или в соответствии с Техническим заданием на проектирование.

Таблица 5 — Значения коэффициентов надежности по нагрузке (ОДМ 218.2.078-2016)

Коэффициент надежности по нагрузке γf

Собственный вес элементов конструкций и материалов 2)

Напорное давление, вызванное сезонными и суточными колебаниями уровней, подпором грунтовых вод

Давление воды непосредственно на поверхности сооружения и основания, силовое воздействие фильтрующей воды; волновое давление; поровое давление

1) Коэффициенты перегрузки, указанные в скобках, принимают в тех случаях, когда возможное уменьшение нагрузки ухудшает работу конструкции (при расчетах на опрокидывание, сдвиг).
2) Коэффициент надежности по нагрузке γf следует принимать равным единице для всех грунтовых нагрузок и собственного веса сооружения, вычисленных с применением расчетных значений характеристик грунтов (удельного веса и характеристик прочности) и материалов (удельного веса бетона и др.), определенных в соответствии со строительными нормами и правилами на проектирование оснований и отдельных видов сооружений.
3) В таблице приведены коэффициенты надежности по нагрузке для расчетов по I группе предельных состояний.

Виды нарушения устойчивости откосов

При разработке грунта, устройстве насыпей (дамбы, земляные плотины, дорожное полотно и т.д.) и выемок (котлованы, траншеи, каналы и т.п.) и в ряде других случаев возникает необходимость в устройстве откосов .

Откосом называется искусственно созданная поверхность, ограничивающая природный грунтовый массив, выемку или насыпь.

Откосы нередко подвержены деформированию в виде обрушений ( рис. 9.1, а ), оползней ( см. рис. 91,б, в, г ), осыпаний и оплываний ( см. рис. 9.1, д ).

Обрушения имеют место при потере массивом грунта опоры у подножия откоса. Оползни и оползания характеризуются перемещением некоторого объема грунта. Осыпание происходит при превышении силами сдвига сопротивления несвязного грунта на незакрепленной поверхности. Оплыванием (сплывом) называется постепенная деформация нижней части обводненного откоса или склона без образования четких поверхностей скольжения.

Основными причинами потери устойчивости откосов являются:

  • устройство недопустимо крутого откоса;
  • устранение естественной опоры массива грунта из-за разработки траншей, котлованов, подмыва откосов и т.д.;
  • увеличение внешней нагрузки на откос, например, возведение сооружений или складирование материалов на откосе или вблизи него;
  • снижение сцепления и трения грунта при его увлажнении, что возможно при повышении уровня подземных вод;
  • неправильное назначение расчетных характеристик прочности грунта;
  • влияние взвешивающего действия воды на грунты в основании;
  • динамические воздействия (движение транспорта, забивка свай и т.п.), проявление гидродинамического давления и сейсмических сил.

Нарушение устойчивости откосов часто является результатом нескольких причин, поэтому при изысканиях и проектировании необходимо оценивать вероятные изменения условий существования грунтов в откосах в течение всего периода их эксплуатации.

Рис. 9.1. Характерные виды деформаций откосов: а — обрушение; б — сползание; в — оползень; г — оползень с выпором; д — оплывание; 1 — плоскость обрушения; 2 — плоскость скольжения; 3 — трещина растяжения; 4 — выпор грунта; 5 — слабый прослоек; 6,7—установившийся и первоначальный уровни воды; 8 — поверхность оплывания; 9 — кривые депрессии

Различают три основных типа разрушения откоса ( рис. 9.2 ):

  • разрушение передней части откоса ( см. рис. 9.2,а ). Для крутых склонов (α > 60°) характерно сползание с разрушением передней части откоса. Такое разрушение чаще всего возникает в вязких грунтах, обладающих адгезионной способностью и углом внутреннего трения;
  • разрушение нижней части откоса ( см. рис. 9.2,6 ). На сравнительно пологих откосах разрушение происходит таким образом, что поверхность
    скольжения соприкасается с глубоко расположенным твердым слоем. Такой тип разрушения чаще всего возникает в слабых глинистых грунтах, когда твердый слой расположен глубоко;
  • разрушение внутреннего участка откоса ( см. рис. 9.2,в ). Разрушение происходит таким образом, что край поверхности скольжения проходит выше передней части откоса. Такое разрушение также возникает в глинистых грунтах, когда твердый сдой находится сравнительно неглубоко.

Таким образом, основными причинами нарушения устойчивости земляных масс являются эрозионные процессы и нарушение равновесия. Эрозионные процессы в механике грунтов не рассматриваются, так как они более подробно рассмотрены в инженерной геологии.

Рис. 9.2. Типы разрушения откосов: а — разрушение передней части откоса; б — разрушение нижней части откоса; в — разрушение внутреннего участка откоса

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector