Tpc-setka.ru

ТПЦ Сетка
17 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расчет откосов насыпи грунта

ТРАНШЕЯХ И ОТДЕЛЬНЫХ ВЫЕМКАХ

Объемы грунта отдельных фигур, располагающихся в пределах насыпи и выемки, V, м 3 , определяют путем умножения площади основания каждой фигуры на среднюю высоту ее рабочей отметки:

,

где hn – рабочие отметки всех вершин фигуры, в том числе и нулевые, м;

n – количество вершин фигуры, в том числе и нулевые;

hСР – средняя величина рабочих отметок, м;

F – площадь фигуры, м 2 .

Объем грунта в откосах выемки (насыпи) V, м 3 (рис.3), определяется по формуле:

,

где Lп – периметр сторон насыпи (выемки);

m – коэффициент заложения откоса;

ho.ср – абсолютная величина средней рабочей отметки по периметру выемки (насыпи):

.

Объем грунта в угловых откосах выемки (насыпи) V, м 3 , определяется по формуле:

,

где h – высота пирамиды, м.

Рис.3. Определение объёмов грунта в откосах выемки (насыпи)

при заложении m=0,5

На основании расчетов заполняется таблица 1. При отсыпке насыпи учитывают остаточное разрыхление грунта. Ввиду того, что при укладке насыпи и интенсивном уплотнении его катками не удается достичь естественной плотности грунта, то для укладки насыпи объемом Vн требуется объем грунта равный V/К, где V – объем грунта естественной плотности; К — коэффициент остаточного разрыхления (для насыпного грунта принимаем К=1,04)

Таблица 1.

Расчет объемов грунта насыпи и выемки

Общий объем насыпи и выемки находится как сумму объемов грунта отдельных фигур, лежащих в пределах планируемой площадки.

– объем грунта в откосах выемки:

(м 3 )

– объём грунта в откосах (кроме угловых):

(м 3 ),

– объем грунта в угловых откосах:

(м 3 ).

(м 3 ),

– объем грунта в откосах насыпи:

(м 3 )

– объём грунта в откосах (кроме угловых):

(м 3 ),

– объем грунта в угловых откосах:

(м 3 ),

(м 3 ).

Для принятия решения об устройстве земляного сооружения (общего котлована под фундаменты, траншей под ряды фундаментов или отдельных котлованов под каждый фундамент) вычерчиваются продольные профили отдельных котлованов под каждый фундамент по рядам в обоих направлениях (см. рис.4а и ). При различном шаге наружных и внутренних колонн, рисунков будет три.

Рис.4а. Продольный профиль разреза фундаментов (фрагмент)

Рис.4б. Поперечный профиль разреза фундаментов (фрагмент)

Земляное сооружение проектируется с учетом крутизны откосов для данного вида грунта и глубины заложения фундамента. Возможны три случая:

1. Если точка пересечения линий откоса только в одном направлении выше уровня земли, то в указанном направлении принимают траншеи под каждый ряд фундаментов;

2. Если точка пересечения линий откоса в обоих направлениях ниже уровня земли отрывается общий котлован;

3. Если точка пересечения линий откоса в обоих направлениях выше уровня земли, то принимаются ямы под отдельные фундаменты.

Расстояние от подошвы откоса до близлежащего фундамента с установленной опалубочной формой принимается не менее 0,2м. При необходимости устройства вертикальной гидроизоляции фундаментов это расстояние принимается не менее 0,5м.

При разработке типа выемок под фундаменты следует учитывать возможность подачи материалов, инвентаря и конструкций к фундаментам, расположенным в средней части здания (подъезд автотранспорта и строительных машин). На рис. 4б показан случай, при котором заштрихованную область выбираем, что определяет выбор траншеи в этом направлении.

После определения типа и размеров земляного сооружения в плане, необходимо рассчитать объемы земляных работ при его разработке (V,м 3 ). Для общего котлована и траншей используется формула:

,

где Нк – глубина котлована по заданию, м; Fн – площадь котлована по низу, м 2 ; Fв – площадь котлована по верху, м 2 ; Fср – площадь котлована на глубине Н /2, м 2 .

При разработке отдельных ям под каждый фундамент их объём определяется по формуле:

.

Объём грунта на съездах в котлован (пионерная траншея) рассчитывается по формуле:

,

где b –ширина съезда по низу, м; L – длина съезда, м.

В рассматриваемом примере объём грунта составит:

м 3

После возведения фундаментов оставшийся объем котлована в виде пазух заполняется грунтом, который называется обратной засыпкой (Vобр.зас. м 3 ). Её объём определяется по формуле:

,

где Vф – объем конструкций ж.-б, фундаментов до планировочной отметки, м 3 ; a — коэффициент остаточного разрыхления грунта после уплотнения (для суглинка – 0,03).

м 3 .

СОСТАВЛЕНИЕ БАЛАНСА И ПЛАНА РАСПРЕДЕЛЕНИЯ ЗЕМЛЯНЫХ МАСС

На основании расчетов объемов разрабатываемого грунта составляется баланс грунта на строительной площадке (табл.2.). При недостатке грунта (отрицательный баланс) для устройства планировочной насыпи объем недостающего грунта разрабатывается в карьере, расположенном за пределами площадки, и доставляется автосамосвалами.

Читайте так же:
Сертификат соответствия грунтовка пф 020

Необходимо иметь в виду, что вытесненный фундаментами грунт, может быть уложен в планировочную насыпь.

Ландшафтная архитектура и зеленое строительство | Totalarch

Вы здесь

Откосы на объектах ландшафтной архитектуры

Откосы представляют собой искусственно созданную наклонную поверхность, ограничивающую естественный или насыпной массив грунта, расположенный между горизонтальными участками, различающимися по высоте. Откосы всегда широко использовались при создании объектов ландшафтной архитектуры и садово-паркового искусства, особенно на сложном рельефе. Откосы также проектируют для укрепления береговых линий и при необходимости преобразования склонов с помощью террасирования. Простота устройства откосов, их устойчивость и естественный внешний вид делают их распространенным способом сопряжения поверхностей на объектах ландшафтной архитектуры.

Откос как инженерное сооружение характеризуется высотой А, длиной горизонтального заложения l и крутизной в относительных единицах. Крутизну откоса принято выражать в виде отношения его высоты, принятой за единицу, к длине заложения (например 1 : 0,5, 1 : 1, 1 : 2 и т.д.). На плане поверхность откоса изображают чередующимися короткими и длинными штрихами, направленными по уклону от верхней бровки откоса к его подножью. Ширина полосы откоса в плане соответствует длине заложения (рис. 5.8).

Рис. 5.8. Откос: а — основные элементы: 7 — подножье; 2 — поверхность; 3 — бровка; 4 — гребень; h — высота заложения откоса; l — длина заложения откоса; б — обозначение на плане

На объектах ландшафтной архитектуры рекомендуется избегать размещения откосов высотой более 2,5. 3,0 м, что обусловлено сложностью их укрепления и эксплуатации.

Устойчивость откоса зависит от характеристик почвы или грунта, гидрологического режима, высоты и крутизны откоса, а также от его местоположения и уровня нагрузки.

Для естественных откосов существуют максимальные величины углов наклона к горизонтальной поверхности, которые позволяют удерживать грунт в достаточно стабильном состоянии (табл. 5.2).

Таблица 5.2. Крутизна естественного откоса

Материал откосаМаксимальный угол, °Крутизна откоса
Травяной покров181 : 3
Песок271 : 2
Супесь301 : 1,7
Щебень341 : 1,5
Суглинок401 : 1,2
Глина601 : 0,6
Камень (насыпь)631 : 0,5
Скала (монолит)761 : 0,25

Рис. 5.9. Деформация откоса: 1 — кривая сдвига; 2 — деформация откоса при оползании; h — высота заложения откоса; Мс — момент сил

Основным видом деформации откосов является их оползание (рис. 5.9). Разрушение откоса может происходить внезапно или проявляться в виде длительного оползания, что чаще наблюдается на глинистых грунтах.

Возможными причинами разрушения откосов обычно становятся излишняя крутизна, увлажнение грунта, увеличение нагрузки на гребне или динамическое воздействие.

Для повышения устойчивости высоких откосов и предотвращения возможного сползания грунта в середине откоса размещают горизонтальную площадку — берму; при этом нижнюю часть откоса проектируют более пологой, чем верхнюю (рис. 5.10, а). Ширина бермы зависит от высоты откоса. Например, для откоса высотой более 6 м ее ширина должна быть не менее 1,5. 2 м.

Рис. 5.10. Преобразование склонов для повышения их устойчивости: а — устройство бермы 1; б — террасирование склона; i т — уклон террасы; i с — уклон склона; h — высота террасы; b — ширина террасы

При террасировании склонов крутизной более 60 %о расчет ширины террасы b выполняется по формуле (рис. 5.10, б):

b — h/(i с — i т ) ,

где h — заданная высота террасы; i с — существующий уклон склона; i т — заданный уклон террасы.

Откосы можно устраивать как путем выемки грунта, так и путем насыпи грунта. Устойчивость последних при прочих равных условиях будет ниже, что связано с неизбежно возникающей просадкой грунта. Основные способы формирования откосов путем срезки и насыпи грунта представлены на рис. 5.11. Для отсыпки оснований откосов используют суглинистые или супесчаные фунты. Грунт насыпают послойно, тщательно уплотняя и увлажняя его водой (из расчета 15 л на 1 м2).

Повысить устойчивость откосов можно различными способами: уменьшением крутизны (уположением откоса); дренированием откоса; закреплением грунтов тела откоса; укреплением поверхности откоса.

Укрепление откосов преследует две основные цели:

• защита наклонной части откоса от поверхностной эрозии, возникающей под воздействием осадков и ветра;
• повышение устойчивости насыпной массы грунта в стабильном состоянии за счет баланса воздействующих на него сил.

Рис. 5.11. Способы повышения устойчивости откосов путем срезки и насыпи грунта: а — уполаживание склона; б — устройство бермы срезкой грунта; в — устройство бермы насыпкой грунта; г — насыпь грунта на ступенчатый срез; «+» — насыпь; «-» — выемка

Выбор материала и технологии для укрепления откоса зависит от местоположения откоса, предполагаемого уровня механических нагрузок, крутизны склона и эстетических качеств формируемой среды.

Читайте так же:
Расчет устойчивости откосов глинистых грунтов

В зависимости от расположения откосы могут быть сухими и влажными (открытые русла водоемов). В этом подразделе мы рассмотрим некоторые основные способы укрепления сухих откосов, а способы укрепления влажных откосов рассмотрены в подразд. «Устройство водоёмов-копаней».

Рис. 5.12. Укрепление откосов посадкой кустарников: а — горизонтальная укладка черенков; б — посадка с использованием плетней; в — закрепление камнем; г — посадка на ступенчатых выемках

Укрепление откосов может выполняться с помощью простейших способов, например посева трав или посадки кустарников (рис. 5.12), которые своими корнями способны удерживать слой грунта, предотвращая его размывание. Для достижения быстрого эффекта может использоваться одерновка или закрепление пластин дерна на поверхности склона с помощью шпилек. Если в качестве верхнего покрытия откоса используется газон, то на грунт основания насыпают слой растительной земли толщиной не менее 10. 15 см, который планируют по проектным отметкам. При этом для лучшего удержания растительного слоя основание отсыпают ступенчато. Более подробно создание газонов описано в гл. «Устройство и содержание газонов».

Хороших результатов в укреплении откосов позволяет добиться использование современных материалов и технологий, таких как габионные конструкции, георешетки, геотекстильные материалы, газонные решетки, выпускаемые зарубежными и отечественными производителями. Их применение позволяет повысить устойчивость возводимых насыпей и стабилизацию грунта на естественных склонах и проектируемых откосах. Основным принципом укрепления откосов является равномерное распределение нагрузок и передача напряжений, действующих в грунте на георешетки, имеющие высокую прочность. У различных производителей имеются запатентованные технологии укладки и крепления материалов. Их основные приемы изображены схематически на рис. 5.13.

Рис. 5.13. Укрепление откосов с применением габионных конструкций: а — габионные конструкции, заполненные камнем; б — габионные конструкции, заполненные грунтом с посевом газонных трав: 1 — геотекстиль

Материалом для габионов является оцинкованная металлическая сетка двойного кручения с ячейками в виде шестигранника. Из нее производят контейнеры, чаще всего в форме параллелепипеда, заполняемые на месте строительства камнем. Габионы устанавливают один на другой, связывая их между собой, что позволяет сформировать конструкцию требуемой конфигурации и высоты. Впоследствии происходит их зарастание травой и мелким кустарником и они становятся частью ландшафта. Габионные конструкции, как и подпорные стенки, позволяют формировать устойчивые вертикальные поверхности. Кроме того, при меньшей высоте контейнеров возможно укрепление наклонных поверхностей до крутизны 1:2. В этом случае возможно заполнение габиона грунтом, который для предотвращения вымывания укладывают на геотекстиль. На таком откосе возможно последующее устройство газона и посадка цветочных растений.

Рис. 5.14. Укрепление откосов с помощью геотекстиля и георешеток: а — укрепление поверхности; б — армирование массива грунта; 1 — трехмерная георешетка; 2 — геотекстиль

Укрепление откосов с помощью геотекстиля и георешеток осуществляется способами, представленными на рис. 5.14. При необходимости укрепления поверхности откосов с целью удержания на его поверхности растительного грунта используются трехмерные георешетки. Они пришпиливаются к поверхности с помощью специальных креплений, затем на них высевают семена газонных трав и засыпают небольшим слоем земли. Также для защиты поверхности откоса от эрозии используют укрывные материалы из разных видов естественных волокон (солома, кокос), закрепленных на синтетической основе. Их разложение способствует улучшению почвенных условий за счет увеличения гумусового слоя, что стимулирует лучшее задернение склонов.

Актуально укрепление откосов для повышения устойчивости насыпей, особенно при использовании слабых фунтов с низкой несущей способностью или в случае недостаточной площади для размещения откоса с пологим склоном. Армирование (прослаивание) массива грунта горизонтальными слоями геотекстильных материалов или георешетками из синтетических волокон или металлической сетки двойного кручения позволяет предотвратить оползание и сдвиг фунта.

Для безопасности пешеходного движения при размещении вдоль верхней бровки откоса пешеходных дорожек и площадок, при высоте откоса более 2,0 м, необходимо предусматривать ограждения высотой не менее 0,9 м (МГСН 1.02-02).

Источник: Строительство и эксплуатация объектов ландшафтной архитектуры. Теодоронский В.С.

Расчет устойчивости откосов подтопляемых насыпей

Потеря устойчивости откосов высоких подтопляемых пойменных насыпей и глубоких выемок на спусках в долину реки является одним из наиболее распространенных видов деформаций земляного полотна на мостовых переходах. Поэтому проверка устойчивости откосов земляного полотна на подходах к мостам — обычная задача для инженера-дорожника, а выполняемые при этом геотехнические расчеты — обязательная часть обоснования проектов мостовых переходов.

Читайте так же:
Рейтинг грунтовок для потолка

При расчетах устойчивости откосов исходят из следующих возможных схем их обрушения:

если грунт земляного полотна однороден или отдельные его слои мало отличаются по прочностным показателям, смещение оползающего массива происходит по образующейся в грунте криволинейной поверхности скольжения;

если грунт земляного полотна имеет неоднородные напластования (откосы глубоких выемок на спусках в долину реки), резко различающиеся по прочностным показателям, смещение грунтовых массивов может происходить по фиксированным поверхностями раздела между слоями.

Наиболее опасными и часто встречающимися случаями являются обрушения откосов по криволинейным поверхностям скольжения. Как показывают наблюдения, откосы насыпей обрушаются по поверхностям скольжения, близким по Форме к кругло-цилиндрическим (рис. 17.6).

Рис. 17.6. Положения опасных кривых скольжения при различных грунтах основания:
а -устойчивых; б -слабых; Lск — расчетная длина скольжения; z — глубина трещины

Обрушению откоса всегда предшествует появление вертикальной трещины обрушения, параллельной бровке земляного полотна (трещины Терцаги). В зависимости от свойств грунтового основания насыпи возможны два вида обрушения:

при достаточно устойчивых грунтах основания поверхность обрушения обычно проходит через подошву откоса насыпи (см. рис. 17.6, а);

в случае слабого грунтового основания поверхность обрушения может заходить в пределы слабого слоя и распространяться за пределы подошвы откоса насыпи (см. рис. 17.6, б).

Устойчивость откоса насыпи оказывается обеспеченной лишь в том случае, если сумма всех сил. сдвигающих массив обрушения (или их моментов относительно оси вращения), оказывается меньше сил (или их моментов), его удерживающих, т.е. при коэффициенте устойчивости Кр ³ 1. Однако, учитывая некоторую погрешность методов расчета, погрешность исходных данных, неучет фактических условий работы (например, динамические воздействия подвижного состава) и т.д., с инженерной точки зрения, устойчивость откоса считается обеспеченной, если расчетный коэффициент устойчивости (17.6) оказывается равным нормативному Кн, или больше его:

(17.6)

Нормативный коэффициент устойчивости определяют:

К1 — коэффициент, учитывающий степень достоверности данных о характеристиках грунтов: К1 = 1 при большом количестве испытаний образцов; К1= 1,05 при испытании менее 5 образцов; К1 = 1,1 при испытании менее 3 образцов;

К2 — коэффициент, учитывающий категорию дороги: К2 = 1,03 — для дорог I и II; К2 = 1 — для дорог — III-V категорий;

К3 — коэффициент, учитывающий степень ущерба для народного хозяйства в случае аварии сооружения: К3 = 1,2, если разрушение представляет опасность для движения либо вызывает перерыв движения более чем на 1 сут; К3 = 1,1, если ожидаемый перерыв движения менее 1 сут; К3 = 1, если нарушение устойчивости вызывает снижение скоростей движения или нарушает работу водоотводных устройств;

К4 — коэффициент, учитывающий соответствие расчетной схемы естественным инженерно-геологическим условиям: К4 = 1,05, если расчет ведется методом попыток; К4 = 1, если плоскость ослабления грунтового массива ясно выражена и грунт однороден;

К5 — коэффициент, учитывающий вид грунта и его работу в сооружении: К5 = 1,03 — для песчаных грунтов; К5 = 1,05 — для глинистых грунтов;

Км — коэффициент, учитывающий особенности метода расчета: Км = 1 при расчетах по Терцаги — Крею и Шахунянцу; Км = 0,8 — по Маслову — Береру.

Для сухих откосов земляного полотна появление сдвигающих сил обусловлено собственным весом обрушающегося массива и временной нагрузкой от подвижного состава. Для периодически подтопляемых насыпей подходов к мостам возникает дополнительное гидродинамическое давление в результате давления и трения о поверхность грунтовых частиц воды, просачивающейся из водонасыщенной насыпи после падения уровней высоких вод на спаде паводка (рис. 17.7).

Рис. 17.7. Схема к расчету устойчивости откосов подтопляемой насыпи:
1 — сухой грунт; 2 — ось насыпи; 3 — водонасыщенный грунт;
J — градиент грунтовых вод; D — гидродинамическое давление

Физическая природа сил, удерживающих массив обрушения, заключается в наличии сил внутреннего трения грунта Рtgj и сцепления с. В общем случае земляное полотно может быть представлено многослойной системой, характеризуемой наличием одного или нескольких геологических слоев с различными физико-механическими свойствами (объемный вес, силы внутреннего трения, сцепление), при этом, для водонасыщенной насыпи один и тот же грунт будет обладать разными физико-механическими показателями выше и ниже кривой депрессии. Так, для грунта ниже уровня грунтовых вод объемный вес определяют с учетом сил взвешивания, а сцепление принимают меньшим, чем для грунта сухой части насыпи.

Читайте так же:
Рецепты грунтовки текстильной куклы

Задача оценки устойчивости откосов земляного полотна сводится к отысканию такого положения центра критической кривой скольжения, при котором коэффициент устойчивости откоса будет наименьшим. Ни один из известных методов расчета устойчивости откосов не дает сразу точного положения центра наиболее опасной кривой скольжения, который может быть найден лишь методом последовательных приближений. При компьютерных расчетах устойчивости вопрос многодельности таких расчетов снимается.

В практике проектирования автомобильных дорог и мостовых переходов наибольшее распространение получил метод оценки устойчивости откосов шведского ученого Феллениуса, согласно которому центры наиболее опасных кривых скольжения располагаются вблизи прямой, проходящей через точки А и В, получаемой построением согласно рис. 17.8 и табл. 17.2.

Рис. 17.8. Схема к определению положения центра критической кривой скольжения:
р — распределенная нагрузка; Н — высота насыпы; Р — вес; N — нормальная сила; Т — сдвигающая сила; I-IX — расчетные отсеки

Параметры прямой Феллениуса

Коэффициент заложения откосаУгол наклона откосаУглы, град
ab
1:0,5860°
1:145°
1:1,533°40′
1:226°34′
1:318°26′
1:414°03′
1:511°19′

Глубину проникания вертикальной трещины определяют по формуле Терцаги:

где (17.8)

с — расчетное сцепление грунта;

j — угол внутреннего трения;

g — объемный вес грунта.

В первом приближении положение центра кривой скольжения принимают на пересечении прямой Феллениуса с вертикалью, проходящей через подошву откоса. Оползающий массив разбивают на вертикальные отсеки. Обычно бывает достаточно 10-20 отсеков шириной Dхi, (см. рис. 17.8). По горизонтали проверяемый массив делят на несколько слоев в соответствии с положением границ раздела геологических напластований. Для подтопляемых пойменных насыпей обязательно выделяют сухую и водонасыщенную части насыпи. При этом уровень грунтовых вод по оси насыпи принимают равным расчетному уровню высокой воды (РУВВp%), а угол наклона кривой депрессии в соответствии с таблицей 17.3.

Гидравлические градиенты и углы депрессии

Наименование грунтаГидравлический градиент JУгол депрессии a
Крупнообломочный грунт0,003-0,0060,0015-0,003
Песчаные грунты0,006-0,0200,003-0,010
Супесчаные грунты0,020-0,0500,010-0,026
Суглинки0,050-0,1000,026-0,053
Глинистые грунты0,100-0,1500,053-0,081
Тяжелые глины0,150-0,2000,081-0,111
Торфянистые грунты (в зависимости от вида торфа и степени его разложения)0,020-0,1200,010-0,064

Следует иметь в виду, что пойменные насыпи, возведенные из практически водонепроницаемых грунтов, рассчитывают как обычные сухие насыпи. С другой стороны, насыпи, возведенные из грунтов с высоким коэффициентом фильтрации (среднезернистые и крупнозернистые пески, гравелистые грунты и т.д.), рассчитывают также без учета сил гидродинамического давления, поскольку уровень грунтовых вод вследствие хорошей фильтрации успевает следовать понижающемуся уровню высокой воды в реке. Однако расчеты устойчивости откосов в этих случаях все-таки рассчитывают с учетом сил взвешивания для подтопленной части грунтового массива.

На каждый i-й отсек действует:

где

Gij — вес j-й призмы грунта в пределах i-го отсека с учетом временной нагрузки, заменяемой эквивалентным слоем грунта;

ai — средний угол наклона поверхности скольжения в пределах i-го отсека;

j — угол внутреннего трения грунта на поверхности скольжения;

с — сцепление грунта на поверхности скольжения;

li — длина дуги скольжения в пределах i-го отсека.

Если рассматривать насыпь единичной длины, то вес j-й призмы i-го отсека можно вычислить:

для сухой части насыпи

для водонасыщенной части насыпи

где

Wij — площадь j -й призмы i-го отсека;

gj — объемный вес грунта j-го геологического слоя.

Гидродинамическое давление для подтопляемой части насыпей:

Wв — площадь массива обрушения ниже уровня грунтовых вод;

J — гидравлический градиент, принимаемый равным тангенсу хорды, стягивающей кривую депрессии, и принимаемый по табл. 17.3.

Таким образом, в общем случае коэффициент устойчивости земляного полотна будет определяться:

(17.9)

Последовательность детального расчета устойчивости откосов земляного полотна на современном этапе, как правило, выполняемого на компьютерах, сводится к следующему:

согласно рис. 17.7 и табл. 17.2 определяют уравнение прямой Феллениуса, вблизи которой располагаются центры наиболее опасных кривых скольжения;

по формуле (17.8) вычисляют глубину проникания трещины Терцаги (см. рис. 17.6);

исследуемый массив земляного полотна делят на п вертикальных отсеков шириной Dхi каждый (обычно п = 10-20) и на m слоев в соответствии с положением границ раздела геологических напластований и кривой депрессии (в случае подтопляемой насыпи) (см. рис. 17.8.);

задаются в первом приближении положением центра кривой скольжения на пересечении ординаты, восстановленной из подошвы откоса с прямой Феллениуса. Радиус кривой скольжения определяется значением ординаты полученного центра;

Читайте так же:
Рейтинг лучших грунтовок глубокого проникновения

по формуле (17.9) находят значение коэффициента устойчивости откоса К;

с шагом Dх* меняют положение центра влево по прямой Феллениуса и при новом положении центра кривой скольжения по формуле (17.9) вычисляют новое значение коэффициента устойчивости К’;

если К’ К, то меняют положение центра скольжения с шагом Dх* вправо до тех пор, пока не будет установлено положение центра с минимальным значением коэффициента устойчивости (см. рис. 17.7);

далее вновь меняют положение центра кривой скольжения, но уже по нормали к кривой Феллениуса в найденной ранее точке влево с шагом Dу*, и по формуле (17.9) вычисляют значение коэффициента устойчивости К»;

если К» К’, то с шагом Dу* ищут положение наиболее опасного центра вправо от прямой Феллениуса;

найденное таким образом минимальное значение коэффициента устойчивости является расчетным для данного поперечника земляного полотна Кp. Его сравнивают с нормативным Кн по формуле (17.7) и, если оказывается, что Кp ³ Кн, то устойчивость откоса земляного полотна обеспечена. Если Кp

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Как рассчитать объем землеройных работ при дорожном строительстве

Что входит в земляные работы

Земляные работы – один из этапов прокладки новой дороги. В них входит выравнивание рельефа поверхности и разработка котлованов. При выравнивании рельефа поверхности экскаваторы выполняют выемку грунта, его отсыпку и перемещение, а выполненную работу считают в м2. При разработке котлованов выполняют землеройные работы, а расчеты выполняют в м3. В рамках данной статьи мы рассмотрим только разработку котлованов при дорожном строительстве.

Как рассчитать объем землеройных работ

Любой котлован – это геометрическая фигура определенной формы. Для расчета объема грунта, требующего выемки, необходимо вычислить объем этой фигуры.

Котлован прямоугольной формы

Котлован прямоугольной формы с вертикальными стенками – это самый простой вариант. Его объем вычисляют по формуле:

V – объем котлована в м3,

b – ширина котлована в м,

L – длина котлована в м,

h – высота котлована в м.

Котлован прямоугольной формы с разной высотой стенок

Если котлован разрабатывать на склоне, то его стенки будут иметь разную высоту. В этом случае объем получившейся фигуры считают по формуле:

V = b × h + b × H 2 × L, где

h – высота меньшей стенки,

H – высота большей стенки,

b – ширина котлована,

L – длина котлована.

Котлован прямоугольной формы с откосами

Сечение такого котлована – трапеция. Самый простой способ высчитать его объем – использовать формулу площади трапеции:

a и b – основания трапеции, а h – ее высота. Тогда объем котлована вычисляют по формуле:

V = a+b2 × h × L, где

a – ширина котлована по дну,

b – ширина котлована по верху,

h – высота котлована,

L – длина котлована.

Котлован в форме многоугольника с откосами

Чтобы вычислить объем такой сложной фигуры, ее можно разбить на несколько простых, а затем просуммировать результат. Но общая формула есть и для этого случая:

V = (F1 + F2 + Fср) × h6, где

F1 – площадь дна котлована,

F2 – площадь котлована по верху,

Fср – площадь котлована на середине его высоты,

h – высота котлована.

Н3: Круглый котлован без откосов

Посчитать объем такого котлована достаточно просто, используя формулу площади круга:

V = Sкр × h = × r2 × h, где

r – радиус котлована,

h – высота котлована,

– постоянная величина, равная 3,14.

Н3: Круглый котлован с откосами

В этом случае объем получившейся фигуры считают по следующей формуле:

V = (R2 + r2 + R × r) × h3, где

R – радиус котлована по верху,

r – радиус котлована по низу,

h – высота котлована.

Мы привели наиболее распространенные ситуации и формулы для расчета землеройных работ. Но при строительстве дорог встречаются и более сложные случаи. Например, на участках кривых малого радиуса с устройством виражей. Для них точные расчеты выполняют по более сложным и специфичным формулам.

Если работы выполняются с помощью техники с установленной системой нивелирования, задача во многом упрощается: инженеры рассчитывают точные размеры выемки, а техника практически в режиме «беспилотника» выполняет нужные операции.

Подробнее об этой технологии читайте в статье «Система нивелирования в спецтехнике: будущее уже здесь?»

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector