Tpc-setka.ru

ТПЦ Сетка
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расчет крепления откосов грунтовых плотин

Страница 10: СНиП 2.06.05-84*. Плотины из грунтовых материалов (54064)

5.8. Отказ от устройства обратных фильтров или переходных слоев для противофильтрационных призм, укладываемых по насыпи крупнообломочных грунтов, допускается при наличии соответствующего обоснования.

5.9. Вместо грунтовых обратных фильтров допускается предусматривать при соответствующем обосновании обратные фильтры из пористого бетона и других пористых материалов.

5.10*. Расчеты устойчивости откосов грунтовых плотин всех классов следует выполнять для круглоцилиндрических поверхностей сдвига. При наличии в основании или теле сооружения ослабленных зон, прослоек грунта с более низкими прочностными свойствами, при оценке устойчивости экрана или защитного слоя и т.д. следует выполнять расчеты для произвольных поверхностей сдвига.

При расчетах следует использовать методы, удовлетворяющие условиям равновесия призмы обрушения и ее элементов в предельном состоянии и учитывающие напряженное состояние сооружения и его основания. Применительно к конкретным геологическим условиям и конструкции плотины могут быть использованы при соответствующем обосновании проверенные практикой упрощенные методы расчета. При однородных характеристиках грунта и отсутствии фильтрационных сил можно пользоваться методами, предполагающими монолитную призму обрушения. В тех же условиях при плоской поверхности откоса и несвязном грунте достаточно оценивать устойчивость малого объема (частицы) грунта на его поверхности сопоставлением коэффициента внутреннего трения материала с крутизной откоса. Для расчета устойчивости откосов плотин I и II классов может быть применен метод, приведенный в рекомендуемом приложении 5*.

При расчетах устойчивости откосов грунтовых плотин всех классов, возводимых в северной строительно-климатической зоне, используя методы, удовлетворяющие условиям равновесия призмы обрушения и ее элементов в предельном состоянии, следует учитывать как напряженное, так и температурное состояние грунтов плотины и ее основания.

5.11*. Устойчивость откоса плотины должна быть проверена по возможным поверхностям сдвига с нахождением наиболее опасной призмы обрушения, характеризуемой минимальным отношением обобщенных предельных реактивных сил сопротивления к активным сдвигающим силам.

Критерием устойчивости откосов плотины является соблюдение (для наиболее опасной призмы обрушения) неравенства

где F — расчетное значение обобщенного силового воздействия, определяемое с учетом коэффициента надежности по нагрузке ??f (в зависимости от метода расчета устойчивости откосов F — равнодействующая активных сил или моментов этих сил относительно оси поверхности сдвига);

R — расчетное значение обобщенной несущей способности системы «сооружение — основание», определяемое с учетом коэффициента безопасности по грунту g, т.е. обобщенное расчетное значение сил предельного сопротивления сдвигу по рассматриваемой поверхности;

f, n, fc — коэффициенты надежности по нагрузке, ответственности сооружения, сочетания нагрузок, определяемые по СНиП 2.06.01-86;

g — коэффициент надежности по грунту, определяемый по СНиП 2.02.02-85;

c — коэффициент условий работы.

При поиске опасной поверхности сдвига может быть использована зависимость для коэффициента устойчивости ks:

Полученные расчетом значения коэффициента устойчивости при соответствующем сочетании нагрузок не должны превышать величины более чем на 10 %, если это не обусловлено особенностями сооружения.

Числовые значения коэффициентов ??n, ??c и fc приведены в табл. 9 — 11.

Удовлетворяющие условиям равновесия

5.12*. При расчетах устойчивости откосов плотин необходимо рассматривать следующие случаи.

Для низового откоса:

а) первый расчетный случай (основной): в верхнем бьефе — нормальный подпорный уровень (НПУ), в теле плотины — установившаяся фильтрация; при наличии воды в нижнем бьефе глубину ее принимают максимально возможной при НПУ, но не более 0,2hi, где hi — высота откоса;

б) второй расчетный случай (основной) при открытых водосбросах (без затворов): подпорный уровень и уровень нижнего бьефа определяются максимальным расходом, относимым к основным сочетаниям нагрузок и воздействий;

а) третий расчетный случай (особый): в верхнем бьефе — форсированный подпорный уровень воды (ФПУ), в нижнем бьефе глубину воды принимают максимальной, соответствующей ФПУ.

Для верхового откоса:

а) первый расчетный случай (основной): максимальное возможное снижение уровня воды в водохранилище от НПУ или от подпорного уровня, соответствующего пропуску максимального расхода, относимого к основным сочетаниям воздействий, с наибольшей возможной скоростью, при этом учитывают фильтрационные силы неустановившейся фильтрации;

б) второй расчетный случай (строительного периода): уровень воды в верхнем бьефе находится на самой низкой отметке, но не ниже 0,2hi, где — hi — высота откоса; уровень грунтовой воды в теле плотины принимают соответствующим установившемуся;

в) третий расчетный случай (особый): максимальное возможное снижение уровня воды в водохранилище от ФПУ с наибольшей возможной скоростью, при этом учитывают фильтрационные силы неустановившейся фильтрации.

Примечания: 1. Для земляных плотин с волногасящими откосами следует производить расчет устойчивости с учетом волнового воздействия (согласно рекомендуемому приложению 6*).

2. При расчете устойчивости откосов земляных намывных плотин необходимо учитывать фильтрацию из прудка при проектируемом его положении в период намыва плотины и насыщение водой грунтов откосов (расчетный случай строительного периода).

3. При расчете устойчивости откосов плотин в сейсмических районах сейсмические воздействия учитывают согласно СНиП II-7-81*.

Устойчивость верхового откоса плотины в условиях сейсмического воздействия следует проверять как для случая быстрого снижения уровня воды в водохранилище от МПУ до наиболее низкого эксплуатационного уровня, так и для случая продолжительного стояния НПУ (или ПУ, соответствующего пропуску расхода, относимого к основным воздействиям).

4. Если консолидация связных грунтов плотины и ее основания не завершается к моменту окончания строительства, в расчетах устойчивости откосов следует учитывать поровое давление как для строительного, так и для эксплуатационного случаев.

5. Для плотин с грунтовым экраном следует рассчитывать устойчивость экрана на откосе плотины и устойчивость крепления на экране. Для участков поверхности сдвига на контакте экрана и плотины или крепления экрана прочностные характеристики принимают для грунта экрана.

6. Расчет устойчивости боковых призм земляных намывных плотин с ядром из глинистого грунта надлежит выполнять с учетом порового давления в период консолидации ядра (расчетный случай строительного периода).

5.13*. При расчете устойчивости откосов плотин прочностные характеристики грунтов тела плотин III и IV классов следует принимать постоянными, а плотин I и II классов — переменными в зависимости от напряженного и температурного состояния грунта в зоне прохождения поверхности сдвига.

5.14*. Напряженно-деформированное и температурное состояния тела плотины из грунтовых материалов и ее основания следует учитывать в расчетах устойчивости откосов плотины, фильтрационной прочности на контакте водоупорных элементов с основанием, проверки трещиностойкости водоупорных элементов, прочности негрунтовых противофильтрационных устройств, анализа поведения плотины при проведении натурных исследований, а также для подбора материалов плотины.

Читайте так же:
Расценка сметы покраска стен с грунтовкой

5.15*. В расчетах напряженно-деформированного состояния плотин I и II классов следует, как правило, применять нелинейные модели, учитывающие пластические деформации грунта в предельном состоянии, при условии определения параметров деформирования испытанием образцов грунта в одометрах и стабилометрах. При этом размеры образцов должны отвечать зерновому составу грунта тела плотины и основания. Для крупнозернистого грунта допускается использовать модельный грунт, в расчетах необходимо учитывать поэтапность возведения плотины, скорость заполнения водохранилища, а для плотин, возводимых в северной строительно-климатической зоне, последовательность промораживания и оттаивания тела и основания плотины.

Для плотин III и IV классов допускается производить расчеты по модели линейно-деформированного тела.

5.16*. Расчет осадок тела и основания плотины следует производить для определения требуемого строительного подъема плотины, а также для уточнения объема работ по сооружению плотины. Для намывных плотин строительный подъем определяют согласно требованиям настоящего пункта и пп.5.17*, 5.18 независимо от запаса грунта на уплотнение в теле сооружения в процессе намыва, устанавливаемого в соответствии с требованиями СНиП 3.02.01-87.

Расчет осадок плотины следует производить в каждом характерном ее поперечном сечении по нескольким вертикалям, проходящим в элементах плотины из различных материалов (ядре, экране, призме и т.д.).

При расчете осадок основания и тела плотины следует соблюдать требования СНиП 2.02.02-85 и СНиП 2.02.04-88.

5.17*. Для плотин I и II классов расчет осадок и их изменения во времени следует производить на основании результатов экспериментальных исследований сжимаемости грунтов с учетом напряженно-деформированного состояния плотин Поровое давление, ползучесть грунта, его просадочность и набухание при повышении влажности в период эксплуатации необходимо учитывать в зависимости от их наличия.

Напряженно-деформированное состояние плотин, возводимых в северной строительно-климатической зоне, следует определять с учетом температурного режима грунтов плотины и ее основания.

Для плотин III и IV классов допускается производить расчет осадок по приближенным зависимостям с использованием значений модулей деформаций по СНиП 2.02.02-85.

5.18. Поровое давление следует учитывать в расчетах в случаях, когда максимальное значение коэффициента порового давления ru,max, определяемое отношением порового давления u к максимальному значению приложенного напряжения , превышает нормативное значение коэффициента порового давления run = 0,1.

Величину ru,max следует определять по формуле

ru,max = ruc ruo, (9)

используя известные значения ruc — коэффициента порового давления, определяемого по схеме закрытой системы (без учета оттока воды из грунта), и ruo — коэффициента порового давления, определяемого по схеме открытой системы (с учетом оттока воды из грунта).

Величины ruc и ruo следует устанавливать по графикам рекомендуемого приложения 1.

5.19*. Горизонтальные смещения плотин определяют путем расчета напряженно-деформированного состояния с учетом изменения сжимаемости грунтов при повышении их влажности, а в северной строительно-климатической зоне — при изменении их температурно-влажностного состояния.

Для плотин II — IV классов допускается оценивать горизонтальные смещения на основе аналогов плотин, построенных в подобных условиях и такой же конструкции. Для предварительных оценок горизонтальных смещений гребня плотины следует принимать их равными осадке гребня после наполнения водохранилища.

5.20*. При проектировании плотин с экраном или ядром (диафрагмой) необходимо учитывать деформации береговых склонов.

В плотинах с негрунтовыми экранами и диафрагмами надлежит рассчитывать продольные и поперечные смещения экранов и диафрагм. Напряженно-деформированное состояние диафрагмы (экрана) следует рассчитывать с учетом трения грунта по поверхности диафрагмы (экрана), схем опирания устройства на основание и разрезки деформационными швами.

5.21. Плиты крепления откосов плотин следует проверять на прочность от воздействия давления волн и льда в соответствии с требованиями СНиП 2.06.04-82*.

5.22*. Трещиностойкость земляных плотин и водоупорных элементов каменно-земляных плотин следует определять путем расчета их напряженно-деформированного состояния. При этом следует учитывать поровое давление, а для плотин I и II классов — изменение сжимаемости и ползучести в соответствии со свойствами грунтов, слагающих тело плотины и основания. В северной строительно-климатической зоне расчет напряженно-деформированного состояния плотины необходимо выполнять с учетом изменения ее температурно-влажностного состояния в ходе строительства.

5.23*. При проектировании плотин из грунтовых материалов, возводимых в северной строительно-климатической зоне, следует выполнять:

для талых плотин — расчеты температурного режима в ходе строительства и эксплуатации с определением положения границ зон талых и мерзлых грунтов, в теле, основании и береговых примыканиях плотины на любой задаваемый период до установления квазистационарного температурного состояния плотины;

для мерзлых плотин с мерзлотными завесами в теле и основании — расчеты толщины мерзлотной завесы, образующейся вокруг линейной системы СОУ или замораживающих колонок за первый и последующие сезоны работы СОУ;

Виды и особенности стенок и откосов траншей, правила расчета их угла

Рытье и использование траншей – обязательная мера во время строительства и дорожных работ разной сложности.

Несмотря на то, что работа кажется просто механической деятельностью, она имеет ряд особенностей, которые нужно соблюдать для достижения желаемого результата.

Как сделать стены и откосы траншеи устойчивыми, какие разновидности их бывают, как организовать работу правильно, разберемся в статье.

Что собой представляют при земляных работах?

Надежность и устойчивость сооружений из земли является главным требованием. Для того, чтоб обеспечить его выполнение важно не просто вырыть углубление, но и спланировать откосы, крутизна которых должна отвечать заявленным нормам. Главным образом эта характеристика зависит от естественного угла откоса почвы в месте строительства.

Самой большой крутизной могут обладать откосы траншей, глубина которых не превышает 5 метров, расположенных на нескальных грунтах, которые находятся выше уровня моря, или тех, которые были искусственно осушены, как и рекомендует СНиП.

Откосы траншеи представляют собой наклонные боковые стенки углублений в грунте, которые могут осыпаться или деформироваться. Именно потому так важно соблюдать все нормы и рекомендации.

Крутизна откосов представляет собой соотношение высоты откоса насыпи, к его основанию. Именно при вычислении правильной крутизны можно быть уверенным, что откос не сползет, а насыпь будет устойчивой и безопасной.

При выборе способа создания стен и откосов, специалисты ориентируются на целый ряд характеристик, которые существенно могут повлиять на основное решение:

  • Рельеф местности.
  • Климатические условия.
  • Гидрогеологические характеристики местности, где будет траншея. Этот пункт особенно важен, поскольку если в местности, где проводятся работы, могут возникнуть паводки, то стандартные методы не сработают.
Читайте так же:
Расход грунтовки старатели 1м2 калькулятор

Только все эти данные в совокупности могут дать понимание полной картины.

  1. Если траншея роется в грунте, с нормальным уровнем влажности, вертикальными стенками и без дополнительных креплений, то нормы глубины выглядят так:
    • в насыпных и песчаных грунтах глубина не может быть более чем 1 метр;
    • в супесчаных и суглинистых грунтах – не превышать 1.25 метра;
    • если земля глинистая, то предел установлен на уровне полутора метра;
    • если грунт особо плотный, то траншея может быть до 2 метров в глубину, но при условии, что все остальные работы будут производиться незамедлительно.
  2. Если разработка проводится на мерзлых грунтах любых пород, траншея может быть на полную глубину их промерзания. Исключением является только сухой песчаный грунт, который, из-за своей подвижности и рассыпчатости, не обладает нужными характеристиками. Если нужно углубиться еще ниже, но для стен необходимы специальные подпорки.
  3. Свои особенности имеет рытье траншеи в грунтах, которые ранее подвергались воздействию мороза, но потом пришли в естественное состояние. Важно соблюдать крутизну откосов, или оборудовать дополнительную подпорку стен.

Только при соблюдении норм можно быть уверенным, что конструкция будет устойчивой и надежной.

Разновидности

Еще на этапе планирования траншеи, и составления образного рисунка, конструктор должен определиться какие стенки и откосы у него будут. У каждой отдельной разновидности есть свои особенности:

    Траншеи прямоугольной формы с отвесными стенками чаще всего используются в случаях, если необходимо провести минимальный объем земляных работ.

Главный их недостаток – необходимость крепления стенок, чтоб уберечь их от обвала, и обеспечить безопасность рабочих, которые будут трудиться.

Отвесные стенки можно делать лишь при условии полного отсутствия грунтовых вод в месте работы, и нормальном уровне влажности.

  • Вертикальные стенки используются при необходимости глубоких траншей в слабосыпучих грунтах, или если поблизости есть отвесные сооружения, расположенные над землей или под ней. Вертикальное крепление предусматривает вертикально монтированные доски с минимальной толщиной 5 см, которые прижаты к стенкам траншеи распорками.
  • Траншеи с откосами не нуждаются в дополнительных подпорках, а потому дают возможность широко использовать технику для выполнения земляных работ. Они имеют большую ширину, а потому требуют большой полосы земли.

    Любой угол, в силу его притяжения к земле, стремится сдвинуться в сторону. Это чревато не только обвалами, но и несчастными случаями на производстве. Чтоб избежать подобных ситуаций важно определить правильный уклон откоса, в соответствии с нормами и рекомендациями.

    Что такое крутизна откоса?

    По большому счету угол откоса представляет собой соотношение высоты к заложению, и измеряется в градусах. Его легко определить, основываясь на параметры, приведенные в СНиП III-4-80. В ней учтены не только разные типы грунтов, но и глубина основной траншеи.

    Если в месте работы есть наслоение разных видов грунта, то расчеты рекомендуется проводить по самому слабому.

    Для примера, разберем простой и распространенный случай. Ровный дачный участок, где абсолютная отметка грунта принята за значение 51.30, а за нулевую отметку – 52.07. При этом нижнее значение фундаментной плиты составляет ровно 3, 000. Но, снизу плиты будет еще слой подготовки, толщиной в дополнительные 10 см. Грунт – суглинок, пространство не ограничено.

    При расчете абсолютной отметки обязательно указывается два знака после запятой, а при относительных величинах — три.

    Как посчитать угол откоса? Далее последовательность расчетов выглядит так:

    1. Высчитываем абсолютную отметку для фундаментной плиты. Для этого от нулевой отметки отнимаем глубину траншеи: 52.07 – 3. 000=49.07.
    2. Определяем точную отметку низа траншеи, с учетом всех факторов (в нашем случае это подложка): 49.07-0.1=48.97
    3. Определяемся с глубиной траншеи, которая будет вырыта: 51.30-48.97=2.33 метра.
    4. На заключительном этапе определяем, что согласно нашим подсчетам оптимальный угол откоса будет 45 градусов.

    По такому алгоритму можно определить оптимальный угол откоса, основываясь на любые параметры.

    Таблица допустимой крутизны

    Для того, чтобы было проще ориентироваться во всех данных, при проведении расчетов предлагаем воспользоваться следующей таблицей:

    Точно указывайте тип грунта, в котором проводятся земельные работы. В противном случае могут быть погрешности.

    Таблица углов естественного откоса грунтов

    Согласно сведениям, полученным от Госстроя РФ, которые размещены в сборнике от 2000 года, углы естественного откоса грунтов, соотношения высоты к заложению для разных видов грунта представлены в таблице:

    Таблица углов естественного откоса пород в разрыхленном состоянии:

    ПородыУгол естественного откоса, град, для породы
    сухойвлажноймокрой
    Растительная земля403525
    Песок крупный30…3532…4025…27
    Песок средний28…303525
    Песок мелкий2530…3515…20
    Суглинок40…5035…4025…30
    Глина жирная40…453515…20
    Гравий35…403530
    Торф без корней402515
    Скальные45…60

    Угол естественного откоса — это самый большой угол, который образовывается откосом грунта в соотношении к линии горизонта в спокойном состоянии. Для того, чтоб лучше понять, как делать чертеж и рассчитывать угол откоса, приводим пример готовой работы:


    Если вас интересует, что собой представляет траншея в строительстве, каково ее устройство, методы разработки, загляните в этот раздел.

    Заключение

    Еще перед началом земляных работ, чтоб все было сделано правильно, важно составить план работы, а так же графики и чертежи последовательности действий. Именно на этом этапе продумываются все нюансы дела, чтоб получить ожидаемый результат. Здесь не бывает не важных моментов или мелочей.

    Правильное планирование стен траншеи и откосов могут уберечь не только от обвалов и повторного выполнения работы, но и от нежелательных травм, и даже несчастных случаев на производстве.

    Еще на этапе предварительной подготовки рассчитайте, какой угол должен быть именно у вашей траншеи, основываясь на параметры и характеристики грунта.

    В СНиП 3.02.01-87 прописаны такие требования:

    • проект должен быть разработан только специалистами, с необходимым образованием, опытом работы и квалификацией;
    • между всеми работниками должна быть налажена коммуникация, чтоб рабочие моменты решались быстро;
    • систематический контроль уровня качества производства работ по строительству, которые проводятся на вверенной площадке;
    • все работники должны иметь нужную специализацию и квалификацию;
    • техническое обслуживание конструкций и коммуникаций, подключенных к ней, должно проводиться исключительно по проекту, в безопасном режиме и рабочем состоянии.
    Читайте так же:
    Расчет расхода грунтовки калькулятор

    Кроме этого, все конструкции, материалы и техника должны соответствовать нормам, и подходить для выполнения земляных работ такого класса и спектра.

    Грунтовые плотины

    Грунтовые плотины

    Плотины возводятся в целях создания искусственных водоемов. Одним из самых распространенных типов плотин является грунтовая их разновидность, само ее название говорит о том, что в качестве основного материала для возведения плотины служит грунт.

    Такой тип плотин достаточно распространен, в основном потому, что грунт — это тот материал, который не требует использования дорогостоящей технологии добычи. Немаловажен и тот факт, что грунтовая плотина может возводиться в практически любом климатическом поясе, также её строительство не имеет ограничений по высоте и ширине.

    Несправедливым было бы утверждать, что грунтовые плотины лишены недостатков. Конечно же, они есть. Сюда можно отнести и то, что в теле строения имеется в наличии фильтрационный поток, кроме того, довольно большие объемы воды могут быть утрачены в результате того, что грунт имеет высокую водопроницаемость.

    Отметим и сложности, сопряженные со строительством грунтовых плотин в условиях длительных по времени отрицательных температур воздуха, неравномерных осадков по продольному и поперечному профилям.

    Типы земляных плотин

    Все грунтовые плотины можно подразделить на несколько типов в зависимости от того, как именно осуществлялись работы. Так, выделяют конструкции с отсыпкой грунта насухо, с отсыпкой в воду, с механическим уплотнением материала, намывные плотины и те, что создаются при помощи направленных взрывов.

    Ещё одно подразделение на типы зависит от конструкции препятствующих фильтрации устройств и тела самой плотины. Тут принято выделять плотины из неоднородного и, напротив, однородного грунта, с экраном из негрунтового или грунтового материала, с диафрагмой, выполненной из негрунтового материала и ядром из грунтового материала.

    В зависимости от того, какие именно противофильтрационные меры были приняты при строительстве плотины, выделяют плотины с диафрагмой, замком, зубом, инъекционной или висячей завесой, со шпунтовой стенкой. Могут также использоваться комбинации из этих конструкций.

    Если говорить о разделении грунтовых плотин на классы в соответствии со СНиП, то такая классификация подразумевает наличие четырех классов. От того, какой класс имеет плотина, напрямую зависят используемые расчетные характеристики.

    Рисунок: Противофильтрационные устройства в основании грунтовых плотин:

    a — зуб; б — замок; в — шпунтовая стенка; г — шпунтовая стенка в сочетании с зубом; д — инъекционная завеса, доведенная до водоупора; e — висячая инъекционная завеса; ж — понур в сочетании с экраном

    При строительстве грунтовой плотины основополагающим этапом принято считать выбор вида её створа. Располагают створ в зависимости от того, каковы в данной местности топографические, инженерно-геологические и гидрогеологические условия. Такие условия влияют на водопроницаемость грунта, а также на его прочностные качества. Для определения объемов воды и расчетных расходов требуется проведение гидрологических изысканий, в процессе которых намечают несколько мест для расположения створов. Выбирается один из них на основе анализа технико-экономических показателей, а сам результат изысканий оформляется как чертеж с пояснительной запиской.

    В плотинных водоемах, которые были созданы при помощи грунтовых плотин, различают 3 уровня поверхности воды. УМО — уровень мертвого объема, НПУ — так называют нормальный подпорный уровень и ФПУ — аббревиатура от словосочетания «форсированный подпорный уровень» (самый верхний).

    Принято обозначать специальными терминами верхнюю и нижнюю часть поперечного сечения плотины, которое образует трапецию. Верхняя часть этой трапеции называется гребнем, нижняя же — подошвой.

    Огромное значение при строительстве плотины имеют характеристики грунта. Нормативы предписывают исключать из применяемых материалов грунты с содержанием более пяти процентов водорастворимых солей, к ним относят хлоридные и сульфатно-хлоридные типы, содержание же сульфатных солей не должно превышать двух процентов общей массы грунта. Ещё один тип грунтов, не используемый в строительстве плотин — грунт в котором содержится более восьми процентов неразложившихся органических соединений.

    Геология и оценка грунтов

    Во время проведения оценки грунтов, используемых для основания плотины, следует обращать внимание на наличие суффозионных грунтов, а также на избыточное поровое давление при консолидации грунта. Если в месте расположения плотины имеются иловые грунты, нужно предусмотрите систему дренирования основания, также этот фактор должен сигнализировать об ограничении плотины по высоте и более низких темпах возведения плотины. Если в основании имеется торф, то плотина должна возводиться с учетом его осадки, степень же разложения торфа должна быть не менее пятидесяти процентов. Грунты с имеющимися в них корневыми системами растений и ходами животных-землероев следует удалить.

    Что касается создания противофильтрационных систем, то их следует выполнять из грунтов с низкими характеристиками водопроницаемости — глин, суглинков, глинобетона. Ещё в таких целях нередко используют асфальт, бетон, полимерные материалы. Допускается использование торфа со степенью разложения не менее пятидесяти процентов для экранов и понуров.

    Откосы плотин из грунта испытывают давление со стороны волн, и показатели этого давления нужны для определения оптимальной высоты конструкции. При определении показателей используют специальную формулу, которую можно найти в справочных изданиях.

    Основные расчеты

    Для этого следует знать высоту волны, ее длину и период повторяемости. Кроме высоты наката волны, требуется определить ещё и высоту ветрового нагона волны. Для этого существует формула вида h= 2*10-6 W2D/gH*cos a3

    За W принимают скорость ветра заданной вероятности превышения, измеряемую в м/с; D — длина разгона волны в метрах; g — ускорение силы тяжести, м/c 2 ; Н—средняя глубина воды в зоне ветрового нагона в метрах; αB — угол между продольной осью водоема и направлением ветра, измеряемый в градусах.

    При расчете показателей конструктивных элементов плотины обращают внимание на максимальную высоту плотины и ширину её гребня. Гребень обычно применяется для прохода и проезда транспорта. В таком случае ширина гребня определяется той категорией дороги, которая по нему будет проходить, однако в любом случае она должна быть не менее пяти метров. Если на гребне не планируется проезд транспорта, его ширина может составлять от трех метров.

    При расчете отметки гребня плотины, исходя из условия о недопустимости перелива воды, то есть превышения d над расчетным форсированным уровнем, используется формула

    Читайте так же:
    Расход грунтовка для пеноблоков

    где hH — величина наката волны на мокрый откос в метрах; h — величина ветрового нагона волны в метрах; α— конструктивный запас. Последний берется как большее из значений 0,5 метра или 0,1/г 1% (высоты волны в метрах с вероятностью превышения 1 %).

    Рисунок: Поперечное сечение грунтовой плотины:

    1 — верховой откос; 2 — берма верхового откоса; 3 — упор крепления; 4 — крепление верхового откоса; 5 — гребень плотины; 6 — тело плотины; 7 — низовой откос; 8 — берма низового откоса; 9 — крепление низового откоса; 10 — дренажная призма; 11 — естественная поверхность грунта; 12 — основание плотины; 13 — замок; 14 — водопроницаемое основание плотины; 15 — водопроницаемое основание плотины; H — высота плотины

    Мокрый откос плотины, подверженный воздействию волн, как правило, укрепляют прочными материалами. На крупных сооружениях часто применяют бетонные и железобетонные плиты, толщину которых также высчитывают по специальной формуле.

    Проектирование дамбы обвалования из грунтовых материалов для защиты территории от затопления

    Выбор местоположения дамбы обвалования, конструкция гребня, проверка устойчивости откосов. Расчет фильтрации через однородную грунтовую дамбу с ядром и наслонным дренажом. Расчет устойчивости низового откоса. Построение эпюры волнового противодавления.

    РубрикаСтроительство и архитектура
    Видкурсовая работа
    Языкрусский
    Дата добавления16.12.2011
    Размер файла410,9 K
    • посмотреть текст работы
    • скачать работу можно здесь
    • полная информация о работе
    • весь список подобных работ

    Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Размещено на http://www.allbest.ru/

    Размещено на http://www.allbest.ru/

    Содержание

    I. Проектирование дамб обвалования из грунтовых материалов

    1.1 Выбор местоположения дамбы обвалования

    1.2 Определение отметки гребня

    1.3 Конструкция гребня дамбы

    1.4 Проектирование откосов грунтовой дамбы

    1.5 Предварительная проверка устойчивости откосов по методике ВНИИ ВОДГЕО

    1.6 Противофильтрационные устройства

    1.7 Дренажные устройства

    II. Расчет фильтрации через однородную грунтовую дамбу с ядром и наслонным дренажом

    III. Расчет крепления откосов дамбы

    3.1 Построение эпюры волнового давления

    3.2 Построение эпюры волнового противодавления

    3.3 Расчет плит крепления на волновую нагрузку

    IV. Расчеты устойчивости дамб обвалования из грунтовых материалов

    4.1 Расчет устойчивости низового откоса

    Список использованной литературы

    Введение

    В данном курсовом проекте необходимо запроектировать дамбу обвалования из грунтовых материалов для защиты территории от затопления. Для этого требуется выбрать тип дамбы (земляная, каменная, каменно-набросная). Определить размеры выбранного типа дамбы, конструкции ее тела, противофильтрационных устройств и дренажей. Провести расчет фильтрации через тело дамбы и ее основание с учетом схемы дренажа, противофильтрационных устройств. Проверить устойчивость откосов дамбы с учетом работы основания. Окончательно сконструировать тело дамбы, противофильтрационное устройство (ядро), дренаж (наслонный), установить тип крепления откосов и гребня. Разработать конструкции сопряжения тела дамбы с основанием.

    Также необходимо начертить генплан дамбы обвалования, продольный профиль по оси дамбы, поперечный профиль дамбы с деталями конструкций.

    I. ПРОЕКТИРОВАНИЕ ДАМБЫ ОБВАЛОВАНИЯ ИЗ ГРУНТОВЫХ МАТЕРИАЛОВ

    1.1 Выбор местоположения дамбы обвалования

    Выбор схем обвалования определяется на основании технико-экономических проработок возможных вариантов с учетом природных условий местности и важности ограждаемой территории в водохозяйственном и культурном отношениях.

    1.2 Определение отметки гребня

    Отметку гребня грунтовой незатопляемой дамбы определяют из условия полного исключения перелива воды через него при накате волны на откос и ветровом нагоне по формуле:

    где РУВ отметка расчетного уровня воды в реке или водохранилище, принимается равной для водохранилищ нормальному подпорному уровню (НПУ) или форсированному подпорному уровню (ФПУ), а для рек уровню воды в реке во время весеннего половодья или паводка; ?hs превышение гребня дамбы над расчетным уровнем воды.

    Превышение гребня дамбы над расчетным уровнем воды можно определить как

    где ?hset — высота ветрового нагона волны, м; hrunl% — высота наката волны на откос обеспеченностью 1%; а — запас возвышения гребня дамбы, определяемый как а =0,1 h1% >0,5 м. Высота ветрового нагона определяется следующим образом:

    где Kw — коэффициент, зависящий от скорости ветра, принимается по табл. 5 [4]; Vw расчетная скорость ветра, м/с; L длина разгона волны, м;

    бщ — угол между нормалью к дамбе и направлением господствующего ветра, град.;

    d1 — глубина воды перед дамбой со стороны реки или водохранилища, м,

    где Ос.д. — отметка основания дамбы.

    Высота наката волны на откос определяется по формуле:

    где ф Ос.д. отметка основания дамбы.

    где ф Ос.д. отметка основания дамбы.

    где Кг =1, Кр=0,9 — коэффициенты, зависящие от типа и шероховатости крепления напорного откоса, принимаются по табл. 6 [4]; Ksp=1,38 — коэффициент, зависящий от скорости ветра и коэффициента заложения напорного откоса m, принимается по табл. 7 [4]; Кrun=1,6 — коэффициент, зависящий от пологости волны (л/h) и коэффициента заложения напорного откоса m1 принимается по графику рис. 10 [4]; h1% — высота волны обеспеченностью 1%,

    где h средняя высота волны, м, определяется согласно п. 13 приложения 1 [4]; К1% коэффициент, принимаемый по графику рис. 2 приложения 1 [4].

    По приложению 1 [4], определяем:

    Тогда длина волны равна:

    1.3 Конструкция гребня дамбы

    Ширину гребня дамбы назначают в зависимости от условий производства работ, категории и типа дороги, проходящей по гребню, но не менее 4,5 м. Ширина земляного полотна (в данном случае совпадает с шириной гребня дамбы) в зависимости от категории автомобильной дороги определяется по табл. 4 [2].

    В целях безопасности движения по краям гребня устраивают ограждения в виде перил или надолб.

    Категория дороги по заданию III:

    Ширина земляной дамбы — 12 м;

    Ширина проезжей части — 7 м;

    Ширина полосы движения — 3.5 м;

    Количество полос движения — 2;

    Ширина обочин — 2.5 м.

    1.4 Проектирование откосов грунтовой дамбы

    Заложения откосов грунтовых дамб принимают из условия их устойчивости с учетом действующих на откос сил, физико-механических свойств грунтов тела дамбы и основания, способа возведения, конструктивных особенностей и высоты дамбы. Для предварительного назначения заложения откосов можно использовать данные, приведенные в табл. 6.3, 6.4, 7.1 [1] (при высоте сооружения более 10 м).

    Так как высота дамбы Нд=6,72м то примем m1=2.5, m2=2.0.

    Крепление низового откоса для защиты его от атмосферных воздействий выбирают в зависимости от материала низовой призмы тела дамбы. Для крепления низового откоса из песчаных и глинистых грунтов применяют посев трав по растительному слою толщиной 0,2-0,3 м, отсыпку щебня или гравия толщиной 0,2 м и другие виды облегченных покрытий.

    Читайте так же:
    Сертификат соответствия грунтовка битекс

    Для защиты верхового откоса земляной дамбы от разрушения течением, волнобоем и льдом также предусматривается крепление. В данном КП принято крепление откоса ЖБ плитами. Размеры плит определены в разделе 3, данного КП.

    Крепление откосов монолитными и сборными бетонными и железобетонными плитами устраивают при высоте волны более 1,5 — 2,0 м и скорости воды более 2-3 м/с. Плиты принимают прямоугольной формы. Крепление откосов сборными железобетонными плитами проектируют с омоноличиванием их в секции. Размеры плит устанавливают в пределах от 1,5×1,5 м до 5,5×5,5 м и толщиной 10-20 см.

    Обратные фильтры под каменной наброской, плитами с открытыми швами или со сквозными отверстиями выполняют из йодного слоя разнозернистого материала или двух слоев из материалов с различными по крупности частицами (по типу обратного фильтра). Под обратными фильтрами на откосах из глинистых и мелкозернистых песчаных грунтов укладывают песчаную подготовку. Под монолитными или сборными плитами с уплотненными швами или замоноличенных в секции укладывают однослойный обратный фильтр. Толщина подготовки зависит от толщины плиты, материала тела дамбы, высоты волны и скорости водного потока.

    1.5 Предварительная проверка устойчивости откосов по методике ВНИИ ВОДГЕО

    При предварительной проверке устойчивости откосов пользуются графиками ВНИИ ВОДГЕО. Данные, необходимые для расчета, принимают по табл.

    Задавшись коэффициентом запаса на устойчивость уn=1,15, для 3 класса капитальности (соответствует коэффициенту надежности по ответственности сооружения, который определяется по табл. 9 [10]), находят соотношение

    где с=0,8 — удельное сцепление грунта тела дамбы, т/м2; р=2,05 — плотность грунта тела дамбы, т/м3; Нд=6,72 — высота дамбы, м.

    Пользуясь полученным значением и величиной угла внутреннего трения грунта тела дамбы, по графику (рис. 1.3) находим безопасный угол наклона откоса 0 = 67 и сравнивают с принятым углом а=26,6 для проектируемой дамбы (m2 = ctg а2). Получаем, что безопасный угол наклона больше принятого угла, следовательно, можно продолжать дальнейшие расчеты, не меняя коэффициент заложения откоса.

    1.6 Противофильтрационные устройства

    Противофильтрационные устройства (ПФУ) выполняют из слабоводопроницаемых грунтов (глинистых, суглинистых, супесчаных, глинобетона) или негрунтовых материалов (бетона, железобетона, полимеров, асфальтобетона и др.). Грунт для ПФУ принимается такой, у которого коэффициент фильтрации был бы в 50-100 раз меньше коэффициента фильтрации грунтов основания.

    В дамбах в качестве ПФУ принимаем ядро из грунтовых материалов.

    Толщину грунтового ядра по верху назначают из условия производства работ, но не менее 0,8-1,0 м, а по низу — в пределах (0,2-0,5)НС, но не менее 2,5-3 м, где Нс -напор воды на дамбу.

    Отметка гребня грунтового ядра после окончательной осадки дамбы должна быть равна

    где hset, — высота ветрового нагона.

    Участки экрана, ядра и понура, на которых возможны промерзание, высыхание и размыв, покрывают защитным слоем несвязанного грунта толщиной не менее глубины промерзания.

    1.7 Дренажные устройства

    Дренажные устройства в теле и основании дамбы выполняют с целью приема и организованного отвода профильтровавшей воды; исключения фильтрационных деформаций грунтов; предотвращения выхода фильтрационного потока на низовой откос и в зону, подверженную промерзанию (что позволяет повысить устойчивость низового откоса); ускорения консолидации илистых и глинистых грунтов и уменьшения порового давления в отдельных зонах дамбы или основания.

    Все дренажи дамб состоят из приемной и отводящей частей. Приемную часть выполняют в виде обратного фильтра из слоев песка, щебня и гравия, отводящую — из более водопроницаемого материала (наброски из камня, галечника или дренажных труб).

    Размеры дренажей определяют с помощью гидравлических и фильтрационных расчетов с учетом возможности их выполнения в производственных условиях современными техническими средствами.

    Наслонный дренаж применяют при дефиците камня. Толщину его вместе с обратным фильтром назначают из условия производства работ, но не менее величины, определяемой по формуле:

    где ds85 =120мм=0,12м — диаметр частиц, масса которых вместе с массой более мелких фракций составляет 85% массы грунта дренажа; tf =2*0,15=0,3 м — толщина обратного фильтра.

    Примем толщину грунтового ядра по верху 1м, а по низу 2,5м.

    II. РАСЧЕТ ФИЛЬТРАЦИИ ЧЕРЕЗ ОДНОРОДНУЮ ГРУНТОВУЮ ДАМБУ С ЯДРОМ И НАСЛОННЫМ

    Фильтрационные расчеты тела дамбы и основания проводят с целью определения их фильтрационной прочности, устойчивости откосов и обоснования наиболее рациональных и экономичных форм, размеров и конструкций дамбы, ее противофильтрационных и дренажных устройств. При этом находят положение поверхности фильтрационного потока (депрессионной поверхности) в теле дамбы, величину фильтрационного расхода через тело дамбы и ее основание, напоры (градиенты напора) в различных точках фильтрационного потока (на выходе его в дренаж, на низовой откос и др.).

    Расчет фильтрации производят «виртуальным» способом, предложенным Н.Н. Павловским. Сущность этого метода заключается в том, что дамбу с ядром приводят к профилю однородной дамбы с наслонным дренажом по способу виртуальных длин. При этом толщину действительного ядра заменяют толщиной приведенного (виртуального) ядра, используя зависимость

    где спр — приведенная толщина ядра, м; Кт =5м/сут и Кя =0,4м/сут— соответственно коэффициенты фильтрации грунта тела дамбы и ядра; сЯ — средняя толщина действительного ядра, м, определяемая по формуле:

    здесь св и сн — соответственно толщина ядра поверху и понизу, м.

    Определив приведенную толщину ядра, получаем поперечное сечение однородной приведенной дамбы с коэффициентом фильтрации грунта тела дамбы Кт.

    Ширину гребня приведенной дамбы определяют по зависимости:

    где bгр — ширина гребня действительной дамбы с ядром, м,

    Ширину основания приведенной дамбы определяют по зависимости:

    где В — ширина действительной дамбы с ядром по основанию

    Дальнейший расчет фильтрации проводим соответственно как для однородной дамбы с наслонным дренажом.

    Расстояния L2, L3, L и L1 вычисляют соответственно по следующим формулам:

    А удельный фильтрационный расход находим по выражению:

    Тогда высоту выклинивания кривой депрессии в наслонный дренаж находим по уравнению:

    где величина определяется по формуле, a f(m2) по зависимостям:

    при m2>1, то f(m2)=0.5+m2

    голоса
    Рейтинг статьи
    Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector