Tpc-setka.ru

ТПЦ Сетка
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Работа с цементом при низких температурах

§ 43. ОСОБЕННОСТИ ПРОИЗВОДСТВА РАБОТ ПРИ ОТРИЦАТЕЛЬНОЙ ТЕМПЕРАТУРЕ

Твердение цементного раствора происходит при взаимодействии зерен цемента с водой, при этом образуется цементный гель, превращающийся затем в камень. С понижением температуры процесс твердения цементного раствора замедляется. Например, при температуре 5° С прочность его нарастает в 3—4 раза медленнее, чем при температуре 20° С, а при понижении температуры до 0°С твердение раствора практически прекращается совсем.

Известковый раствор твердеет вследствие кристаллизации гидрата окиси кальция, испарения избытка влаги и частичной карбонизации извести (при поглощении углекислого газа из воздуха). Для твердения необходимо, чтобы известь находилась во влажной среде. Наращивание прочности известкового раствора также зависит от температуры окружающей среды.

При отрицательной температуре (ниже 0°С) в растворе происходят физические явления, которые отражаются на его структуре и прочности. Во-первых, при замерзании раствора содержащаяся в нем свободная вода превращается в лед, который в химическое соединение с вяжущими веществами не вступает. Если твердение вяжущего не началось до замерзания, то оно не начнется и после замерзания; если же оно уже началось, то практически приостанавливается до тех пор, пока свободная вода будет находиться в растворе в виде льда. Во-вторых, замерзающая в растворе вода значительно увеличивается в объеме (приблизительно на 10%); вследствие этого структура раствора разрушается и он частично теряет накопленную до замерзания прочность.

При быстром замерзании свежевыложенной кладки в швах образуется смесь вяжущего вещества и песка, сцементированная льдом. Раствор настолько быстро теряет пластичность, что горизонтальные швы остаются недостаточно уплотненными; при оттаивании они обжимаются весом вышележащей кладки, что может вызвать значительную и неравномерную осадку и создать угрозу прочности и устойчивости кладки. При раннем замораживании кладки конечная прочность цементных, цементно-известковых и цементно-глиняных растворов, которую они приобретают после оттаивания и 28-дневного твердения при положительной температуре, значительно снижается и в некоторых случаях не превышает 50%j марочной прочности. Эти обстоятельства обусловливают необходимость соблюдения определенного режима зимней кладки, который обеспечил бы прочность раствора и кладки в целом.

В зависимости от вида кладки и возводимых конструкций каменные работы зимой выполняют следующими способами: замораживанием, с использованием противо-морозных добавок, с применением паро-, электропрогре» ва, в тепляках.

Способом замораживания кладку ведут на открытом воздухе из мерзлого кирпича, камней или блоков правильной формы на растворе, имеющем положительную температуру в момент укладки его в дело, а затем замерзающем. Сущность этого способа заключается в том, что раствор в швах, замерзший вскоре после укладки его в дело, твердеет в основном веской после оттаивания кладки и частично в период до замерзания (за счет имевшейся плюсовой температуры раствора и экзотермии цемента), а также при зимних и весенних оттепелях или искусственном отогревании кладки. При выполнении кладки этим способом необходимо учитывать, что в момент оттаивания она имеет наименьшую прочность и от перегрузки может разрушиться.

Разновидностью способа замораживания является возведение каменных конструкций «под заморозку» с последующим искусственным полным или частичным оттаиванием мерзлой кладки.

Способ замораживания применяют наиболее широко как самый экономичный, наименее трудоемкий и простой по сравнению с другими видами зимней кладки.

Зимнюю кладку можно вести также на растворах с химическими противоморозными добавками. Эти растворы способны накапливать значительную прочность при средних и слабых морозах (к моменту оттаивания кладки весной).

При возведении кладки на растворах с химическими добавками нужно следить за тем, чтобы приготовленный раствор был использован в дело до того, как он под воздействием добавок начнет схватываться. Это усложняет работу, поскольку при больших объемах строительства раствор готовят на центральных узлах или заводах и доставка его на рабочее место требует значительного времени. Кладка на растворах с химическими добавками, обеспечивающими частичное твердение растворов на морозе и хорошее сцепление раствора с камнем после оттаивания кладки, имеет ограниченное применение. » Употребление таких растворов для кладки кирпичных стен жилых зданий, как правило, запрещается, так как ‘ химические добавки являются гигроскопическими веществами. Они вызывают повышенную влажность зданий, часто дают высолы на поверхностях кладки, а некоторые из них выделяют вредные газы.

Читайте так же:
Объем удельный вес цемента

Электро- или паропрогрев -применяют при твердении свежевозведенной кладки таких конструкций, которые должны иметь повышенную прочность и уменьшенную осадку в период их оттаивания. Кладку с электро- и паропрогревом применяют редко из-за сложности устройства приспособлений для паропрогрева и необходимости экономить электроэнергию. Только в случаях, экономически оправданных (при наличии дешевых источников электроэнергии или пара), этот способ применяют для возведения особо ответственных конструкций.

При в о з в еден ии конструкцийв те п л я к а х кладка не замерзает до тех пор, пока раствор не приобретет требуемую прочность. После этого кладку оставляют без тепляка на морозе и она замерзает. Кладка в тепляках значительно удорожает работу и поэтому ее применяют иногда при возведении фундаментов или стен подвалов из бутобетона, а также в тех случаях, когда другие способы менее экономичны.

Влияние пониженных и повышенных температур на твердеющий цемент.

Понижение температуры замедляет процесс твердения цемента и, следовательно, снижает его механическую прочность. Схватывание и твердение практически прекращаются при превращении воды в лед. После оттаивания этот процесс возобновляется, но конечная прочность при этом уменьшается. Быстротвердеющие цементы менее чувствительны к понижению температуры, так как характеризуются повышенным тепловыделением и быстрее наращивают прочность.

Прочность бетона к моменту возможного замораживания должна составлять не менее 50-70% от проектной в зависимости от вида конструкции. Для достижения этой прочности в зимних условиях бетон должен выдерживаться по методу термоса, основанному на применении утепленной опалубки и защитного покрытия открытых поверхностей, обеспечивающих замедленное остывание бетона до того момента, когда он приобретет требуемую прочность. Наряду с этим применяют искусственный прогрев бетона электрическим током, паром или теплым воздухом.

При зимних работах используют и так называемые противоморозные добавки, затворяя бетон на растворах солей (смесь CaC l 2 с NaCl, поташ), понижающих температуру замерзания жидкой фазы в твердеющем бетоне и ускоряющих его твердение. Применение противоморозных добавок позволяет не нагревать бетон при твердении. При использовании в качестве противоморозных добавок хлористых солей бетон можно применять только для неармированных конструкций.

Большое значение для целого ряда сооружений имеет морозостойкость уже затвердевшего цементного раствора или бетона, особенно в тех случаях, когда многократное замораживание и оттаивание сопровождаются увлажнением водой. Такое совместное действие воды и мороза наблюдается, в частности, в частях плотин, шлюзов и ряда других гидротехнических сооружений, расположенных в зоне переменного горизонта воды. Вредное действие описанных факторов объясняется тем, что вода, замерзая в порах и случайных трещинах бетона, увеличивается в объеме, что создает давление на стенки пор и вызывает в бетоне внутренние напряжения. Многократное замерзание и оттаивание могут разрушить бетон. Следует отметить, что наиболее морозостойкие бетоны получаются на основе цемента. Большое значение имеет структура бетона, его плотность и степень водонасыщения.

В зависимости от назначения сооружений и климатических условий бетон должен выдерживать от 15 до 150, а иногда и более циклов замораживания с промежуточным оттаиванием.

Для повышения морозостойкости; а следовательно, и долговечности цементного бетона применяют так называемые воздуховлекающие добавки, к которым относят: абиетат натрия — продукт нейтрализации (омыления) абиетиновой смолы (винсол), омыленный (нейтрализованный) древесный пек и некоторые другие. Эти добавки вводят в небольшом количестве, примерно 0,05-0,2%.

Читайте так же:
Минимальная толщина песчано цементной стяжки

Воздухововлекающие добавки не только повышают морозостойкость, для чего они главным образом и предназначены, но и водонепроницаемость, улучшают подвижность и уменьшают водопотребность бетонов и растворов. При этом несколько снижается прочность и уменьшается объемный вес. Обычно при смешении цемента (без добавок) с водой и заполнителями в процессе приготовления бетонной смеси в ее состав вовлекается некоторое количество мелких пузырьков воздуха (не более 2%). Введение воздухововлекающих добавок увеличивает содержание воздуха в бетонной смеси на 3-5%, в ней образуется много мельчайших замкнутых воздушных пузырьков, равномерно распределенных по всей массе материала. Эти пузырьки воспринимают возникающее при замерзании бетона давление расширяющейся воды и тем самым ослабляют давление на стенки пор.

Повышение температуры ускоряет процесс твердения цемента и увеличивает его прочность. Необходимым условием при этом является наличие влажной среды. В противном случае повышение температуры может значительно понизить прочность твердеющего цемента.

С учетом этого заводы бетонных изделий пользуются следующими приемами, ускоряющими процесс твердения бетона: пропариванием в пропарочных камерах насыщенным паром нормального давления; запариванием бетонных изделий в автоклавах паром под давлением около 9 атм; электропрогревом твердеющего бетона. Наиболее распространен первый метод, причем обычно через 10-12 ч пропаривания достигается не менее 70% отпускной прочности изделий. Через 28 суток прочность пропаренных изделий все же на 10-20% ниже прочности изделий, твердевших весь этот срок при обычных температурах.

Затвердевшие растворы и бетоны не могут считаться вполне огнестойкими, а тем более огнеупорными, так как продукты, составляющие затвердевший цементный камень, разрушаются при повышенных температурах. Так, например, Са(ОН)2 обезвоживается при 547 0 С, а гидросиликат кальция начинает терять гидратную воду при температуре 180-200 0 С. Тем не менее бетон оказывается достаточно стойким при пожарах, так как в этом случае высокие температуры действуют только на его поверхность, внутри же него температура не доходит до критических пределов.

Согласно исследованиям К. Д. Некрасова, стойкость цементных растворов и бетонов по отношению к длительному действию высоких температур может быть повышена при добавке к цементу некоторых тонкомолотых минеральных добавок. В сочетании с огнеупорными заполнителями них можно получать жаростойкие бетоны, пригодные для применения в условиях высоких температур. Обычный бетон на цементе используют в элементах конструкций тепловых агрегатов, где температура не выше 200 0 С. Бетон на цементе или шлакоцементе с заполнителями виде боя глиняного кирпича, отвального доменного шлака, вулканического туфа, базальта, диабаза и андезита без тонкомолотых добавок может применяться в условиях службы до 350 0 С При введении в эти бетоны тонкомолотых добавок цемянки, золы-уноса, пемзы, гранулированного доменного шлака температура, которую может выдержать материал, повышается до 700 0 С. При добавке же к цементу шамота в тонком лотом виде, а также в виде мелкого и крупного заполнителя, получают жаростойкий бетон, который может служить 1200°С. Наконец, если в цемент ввести фосфорный ангидрид (в виде фосфоритной муки или ортофосфорной кислоты), а в бетон тонкомолотые хромит и магнезит и в виде мелкого и крупного заполнителя — хромит, то температура службы того бетона повышается по 1700 0 С.

Противоморозная добавка в бетон: виды незамерзайки

Для работы с цементными растворами на улице оптимальная температура окружающей среды должна быть в пределах +5…+25 °С. При минусовых значениях водная составляющая замерзает, бетон теряет свойства и становится непригодным к использованию. Решением проблемы являются противоморозные добавки (ПМД), которые исключают кристаллизацию воды в растворе.

Назначение и область применения

Принцип действия ПМД основан на свойствах комплекса присадок, которые при соединении с водой меняют температуру замерзания, опуская её ниже нуля. У бетона или раствора с добавкой ускоряется процесс схватывания и набора марочной прочности.

Читайте так же:
Цемент м500 приготовление смеси

Свойства противоморозных составов регламентируются ГОСТ 21411-2008, ГОСТ 31384-2008.

Цементные растворы с ПМД применяются в случаях:

  • строительства в холодное время при минусовых температурах окружающего воздуха;
  • транспортировки в зимнее время;
  • необходимости повышения прочности бетона;
  • снижения расхода раствора.

Активно применяются добавки в северных регионах, в зимнее время по всей территории России. Используются при потребности в срочном ремонте железобетонных конструкций. При температуре +1…+5 °С ПМД применяется с целью улучшения показателей прочности, однородности, удобства в укладке бетона.

Состав и как сделать самому

Добавки различаются по свойствам и бывают трёх видов:

  • Антифризы – понижают температуру кристаллизации, нормализуют процесс застывания;
  • Ускорители схватывания – сокращают время до приобретения заданной прочности;
  • Растворители – растворяют в воде целые частицы бетона.

В состав ПМД входят неорганические соли: нитраты, хлориды, сульфаты, карбонаты, формиаты, и органические вещества: мочевина.

Аммиачная вода – простая и универсальная добавка. Её добавляют в раствор в количестве, рассчитанном в зависимости от окружающей температуры (таблица 1).

Таблица 1 – Количество ПМД при разных температурах

Температура окружающей среды, °СКонцентрация добавки, %
До -105
От -10 до -2010
От -20 до -3515
Ниже -3520

Противоморозные пластификаторы делают бетонную смесь пластичной и удобной в укладке. Уменьшают расход воды, увеличивают водонепроницаемость и прочность конструкции. В составе полиакрилаты, сульфаты нафталина и меламиновой смолы.

Упрочняющие добавки ускоряют твердение бетона. Состоят из хлорида кальция, сульфата железа, алюминия, нитрата кальция.

Присадки, повышающие стойкость к коррозии, применяются для уменьшения окисления железобетонных конструкций и защиты от морозов. Увеличивается срок службы, устойчивость к агрессивным средам.

Незамерзайка для бетона и раствора: рейтинг

Рынок предлагает широкий спектр противоморозных добавок с разными эксплуатационными характеристиками и свойствами (таблица 2).

Таблица 2 – Производители ПМД для бетона, цементного раствора

НаименованиеВид, назначениеТемпература окружающей средыФорма выпуска
Плантикор-П (Юг-Промхимтех)Универсальные пластификаторы для товарного бетона, штукатурного и кладочного раствора-25°СГотовый раствор в канистрах
Пуфас (PUFAS) (ПФ Спектр под контролем Pufas — Германия)Добавки для бетона, строительных растворов-10°С, -15°СЖидкая в канистрах 5, 10 л
NEOMID STOPMOROZ (Neomid)Ускоритель схватывания, модификатор характеристик для бетона, растворов и сухих строительных смесей-25°ССухой порошок 1.5, 3, 12 кг
Гидротекс-ПМД (ПК Гидротекс)Пластифицирующая жидкость для предотвращения замерзания товарного бетона и растворов-25°СЖидкая в пластиковой упаковке 1 и 5 л
MEDERA 170 Anti-Frost-10Пластифицирующая добавка в строительные растворы и бетон-10°СЖидкая в канистрах 20 л
Формиат натрия жидкий 25% (Goodhim)Противоморозная добавка для бетонов, растворов, монолитных железобетонных конструкций, стыков-15°СЖидкая в канистрах 5,10,20 л
Кратасол Крио-П (NovaTech)Антифриз, пластификатор для цементных растворов-25°ССухой порошок, жидкая
ВТВ (Черноземстрой)Модификатор для сухих смесей, готовых растворов и бетонов20°СЖидкая в канистрах 10 л
Лакра (ХимТоргПроект)Противоморозный модификатор для бетона-15°СЖидкая в канистрах 10 л
Барьер (Черноземстрой)Противоморозный пластификатор в бетон и растворы-15°СЖидкая в канистрах 12 кг

Способ применения

Добавка смешивается с водой перед добавлением в теплый (при +10…+20 °С) или в холодный раствор, в зависимости от цели использования.

Важно: нельзя использовать для приготовления бетона замёрзший заполнитель.

Температура готовой смеси должна быть на 5 градусов выше, чем заданная точка замерзания водного раствора с антиморозной присадкой. Иначе необходимо утепление.

Пример приготовления зимнего бетона в индивидуальном строительстве:

  1. В работающем миксере смешиваются вода и незамерзающая жидкость.
  2. Добавляется половина песка.
  3. Вводится цемент.
  4. Оставшийся песок.
  5. В конце засыпается крупный заполнитель (щебень, гравий) и хорошо промешивается.

Заливка в опалубку происходит стандартными способами, работы ведутся непрерывно. Сразу после укладки поверхность укрывается теплоизоляционными материалами. На этапе ухода не потребуется дополнительного утепления в случае правильного применения ПМД определённого вида в нужной концентрации.

Читайте так же:
Чем защититься от цементной пыли

Антифризы добавляют в количестве 10-15%, ускорители – до 5% от объёма раствора.

В случае увеличения концентрации добавки раствор теряет марочную прочность и разрушается.

Влияние пластификатора на цементный состав

Применение противоморозных (морозостойких) пластификаторов приводит к повышенному отделению воды в цементном растворе. В качестве мер для борьбы с этим явлением используется корректировка состава бетона путём увеличения количества песка с пониженным модулем крупности, введения минеральных добавок.

Смеси хлорида кальция с нитритом и хлоридом натрия, соли кальция используются в качестве пластификатора со слабым действием. За счёт этого снижается соотношение воды и цемента до 5% при сохранении коэффициента подвижности раствора.

Карбамид в комплексных морозных добавках увеличивает время схватывания цемента, повышает подвижность бетона. Эффект пластификатора проявляется более чётко.

При производстве строительных работ в холодное время года с успехом используются зимние добавки. Соблюдение регламентов и технологии применения морозостойких составов позволяет без простоев и прерываний создавать прочные бетонные конструкции.

Тампонажные материалы для цементирования обсадных колонн в интервалах залегания ММП

Многолетнемерзлые породы широко распространены на нашей планете и имеются на всех континентах, за исключением Австралии. ММП занимают около 47% территории России. В связи с ростом объемов буровых работ в северных районах приобрели актуальность специфические проблемы, связанные с цементированием обсадных колонн в вечной мерзлоте.

Многолетнемерзлые породы широко распространены на нашей планете и имеются на всех континентах, за исключением Австралии. ММП занимают около 47% территории России. В связи с ростом объемов буровых работ в северных районах приобрели актуальность специфические проблемы, связанные с цементированием обсадных колонн в вечной мерзлоте.

Обычные тампонажные портландцементы непригодны для применения в интервалах ММП, так как они не схватываются, а замерзают при температурах ниже нуля, даже с добавками хлористого кальция, а скорость гидратации при температурах ниже 4°С незначительна.

Если цементный раствор замерзает до начала схватывания, то в нем образуются прожилки льда. При растеплении образца и дальнейшем твердении при положительной температуре лед тает, а прожилки превращается в трещины, количество которых достигает 100 на 1 см2 площади. Трещины являются причиной резкого снижения прочности цементного камня и чрезвычайно высокого роста проницаемости образцов, достигающей 200 мД и более [1].

Таким образом, основным направлением исследований в данной области стала разработка альтернативных тампонажных материалов, соответствующих геолого-техническим условиям цементирования обсадных колонн в интервалах залегания ММП. Среди множества предложенных решений наибольшее распространения получили два типа материалов: на базе высокоглиноземистых цементов и на базе гипсоцементных смесей.

Основным компонентом высокоглиноземистых цементов является моноалюминат кальция CA. Такие цементы обычно схватываются и набирают прочность при низких температурах. Однако они имеют существенные недостатки, среди которых высокое тепловыделение при гидратации, приводящее к растеплению приствольной зоны в процессе ОЗЦ, а также несовместимость их с портландцементом и большинством реагентов, применяемых для обработки тампонажных растворов. Например, хлористый натрий резко замедляет сроки схватывания, а добавка хлористого кальция, напротив, может привести к мгновенному схватыванию цементного раствора. По этим причинам высокоглиноземистые цементы в настоящее время практически прекратили применять для цементирования обсадных колонн.

Наиболее широко в арктических районах Аляски и Канады применяются гипсоцементные тампонажные композиции. В 60-х — 70-х годах ХХ века в фирмой Halliburton были проведены исследования тампонажных материалов для ММП [2] и разработан состав на базе гипсоцементной смеси, получивший широкое распространение под маркой «Permafrost». Далее, аналогичные составы были разработаны другими компаниями. Гипсоцементная композиция была разработана во ВНИИКРнефть и выпускалась под маркой ЦТН [3].

Читайте так же:
Расход цемента по госту для бетонов

Гипсоцементные смеси обладают рядом преимуществ перед другими материалами — способность схватываться и набирать прочность при отрицательных температурах, сохранение прочности цементного камня при воздействии знакопеременных температур, хорошее сцепление, по данным лабораторных исследований, с многолетнемерзлыми породами (смоделированными в лаборатории) и с обсадными трубами. Также гипсоцементным смесям присущи определенные недостатки, главными из которых являются низкая водостойкость гипса и большое водоотделение (и, соответственно, усадка) тампонажного раствора.

Требования, предъявляемые к тампонажному материалу, предназначенному для цементирования интервалов ММП, достаточно полно изложены в работах [4] и [5]. Они были рассмотрены с небольшими изменениями в следующем виде:

— цементный раствор должен схватываться при температуре до -5ºС;

— цементный раствор должен обеспечивать приемлемое, технологическое оправданное время ОЗЦ;

— цементный камень должен приобретать за время ОЗЦ прочность, достаточную для продолжения буровых работ;

— цемент должен иметь низкую теплоту гидратации для уменьшения степени оттаивания мерзлых пород;

— цементный камень должен быть стойким к циклическим изменениям знакопеременных температур;

— цементный камень должен иметь высокую водостойкость (сохранять прочность при хранении в воде).

Кроме того, цементные раствор и камень должны обладать рядом свойств, предъявляемых к тампонажным растворам в целом (седиментационная устойчивость, технологически приемлемое время загустевания и т. д.).

На основе анализа литературных источников, промысловых данных и результатов лабораторных исследований наиболее перспективным материалом была признана гипсоцементная смесь. При этом заданным параметрам тампонажных растворов соответствовал только высокопрочное гипсовое вяжущее, позволяющее получить высокую раннюю прочность и удовлетворительную водостойкость цементного камня.

Анализ рынка и лабораторные испытания показали, что предъявляемым требованиям, как в части обеспечения заданных параметров тампонажных растворов, так и в части соотношения цена/качество, в наибольшей степени отвечает ГВВС для тампонажных растворов (Тампонажный гипс) производства ЗАО «Самарский Гипсовый Комбинат», который и был принят в качестве базового материала для разработки гипсоцементных тампонажных материалов.

Необходимо отметить, что на ЗАО «Самарский Гипсовый Комбинат» был разработан и в настоящее время производится специальный Тампонажный гипс, который рекомендуется для использования в качестве базового компонента составов, предназначенных для цементирования интервалов ММП.

Разрабатывались два варианта композиций: для растворов нормальной плотности — Полицем Фрост, и для облегченных растворов — Полицем Фрост Лайт.

Первоочередной задачей при разработке рецептуры композиции был поиск эффективного замедлителя схватывания гипса, который позволил бы получить приемлемое время загустевания тампонажного раствора, при этом не влиял отрицательно на прочностные показатели цементного камня, а также имел приемлемую стоимость. В связи с последним требованием рассматривались только реагенты отечественного производства.

Путем применения специальных добавок к Тампонажному гипсу была реализована высокая водостойкость цементного камня. Кроме того, введение данных добавок позволило значительно повысить седиментационную устойчивость тампонажных растворов, сведя водоотделение и усадку практически к нулю. Лабораторные исследования показали, что при хранении образцов Полицем Фрост в воде в течение 90 суток снижения прочности не происходит. Водостойкость цементного камня на базе Полицем Фрост представлена на рис. 1.

Таким образом, были разработаны две рецептуры тампонажных смесей для цементирования интервалов ММП, параметры которых, а также растворов на их основе, не уступают (а по ряду показателей и превосходят) решениям зарубежных компаний, представленным на рынке в настоящее время. При этом состав композиций полностью представлен компонентами отечественного производства, что положительно сказывается на цене конечного продукта. Основные показатели растворов и цементного камня на базе тампонажных материалов Полицем Фрост и Полицем Фрост Лайт приведены в таблице 1.

Таблица 1. Основные технологические показатели цементных растворов и камня на базе материалов Полицем Фрост и Полицем Фрост Лайт

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector