Tpc-setka.ru

ТПЦ Сетка
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Кирпич при нагревании расширяется

Нагрев и деформация полимеров: поведение и физическое состояние пластмасс.

Практически все способы обработки пластика сводятся к вводу энергии, которая в итоге преобразуется в тепло, и прикладыванию определенного давления. Это касается даже процесса сваривания. Поэтому мы можем сделать следующий вывод:

Главными характеристиками, от которых будет зависеть способность полимеров к свариванию и переработке, являются их реакция на нагревание и деформирование.

В зависимости от реакции на термический нагрев все полимеры можно разделить на такие группы:

Термопластичные пластмассы или термопласты. Такие полимеры не изменяют свою структуру при повышении температуры и охлаждении. При нагреве термопласты размягчаются, но остаются химически неизменными. Это свойство термопластов позволяет их легко сваривать или создавать из них изделия различных форм.

Термореактивные пластмассы или реактопласты. Данный тип полимеров под воздействием высоких температур приобретают пространственную структуру и полностью утрачивают способность плавиться. Термореактивные пластики соединяют при помощи так называемой химической сварки.

Особенности подвижности макромолекул полимеров при нагреве

Нагрев пластиков ведет к преобразованию их состояния за счет того, что повышение температуры увеличивает запас средней тепловой энергии макромолекул полимеров, следовательно, подвижность макромолекул повышается. С характеристикой подвижности макромолекул у полимеров связаны определенные особенности, которые мы рассмотрим в данной статье.

Гибкость макромолекул пластика

Молекулы полимеров связаны друг с другом очень сильно, поэтому при нагревании макромолекулы не разъединяются полностью и не могут независимо друг от друга двигаться. Полный разрыв соединений макромолекул пластика по всей длине возможен только при воздействии такого количества энергии, которое больше энергии хим. связей основной цепи. Это значит, что оторвать молекулы полимера друг от друга возможно только при полной деструкции химических связей. Однако, на помощь для перемещения молекул приходит такое их свойство как гибкость макромолекул полимера.

Гибкость молекулы полимера обуславливается ее большой длиной, которая может быть больше поперечника в тысячи раз. Свойство макромолекулы изгибаться можно сравнить с гибкостью длинной нити. Также дополнительная гибкость обеспечивается деформированием валентных углов и увеличением при нагреве межчастичных расстояний. Вращение частиц макромолекулы вокруг простых химических связей без их разрыва требует значительно меньших энергозатрат. Данное вращение называют конформацией.

Из-за теплового движения отдельных звеньев макромолекул полимеров и благодаря их высокой гибкости, относительное перемещение молекул пластика происходит частями.

Гибкость макромолекул измеряется в величине ее частицы, которая при определенных условиях внешнего воздействия ведет себя как отдельная кинетическая единица и двигается независимо от других сегментов.

Чем больше молекулярная масса полимера, тем больше будет гибкость цепи, а увеличение молекулярных связей наоборот гибкость уменьшает. Если взять две молекулы полимера с равной молекулярной массой, то гибкость будет больше у той, у которой длина сегментов меньше.

Читайте так же:
Раствор кладочный м150 для кирпича

Выделяют три состояния аморфных полимеров, которые обуславливаются свойством гибкости молекул:

Стеклообразное состояние. Или проще говоря застывшее. При низких температурах пластик полностью застывает и твердеет. В данном состоянии не наблюдается абсолютно никакой сегментарной подвижности, потому как в молекуле для этого не хватает тепловой энергии. Время пребывания в застывшем состоянии у пластика практически не ограничено.

Высокоэластичное состояние. Данное свойство наблюдается при повышении температуры. Сегменты начинают смещаться и макромолекулы становятся способны принимать различные конформации: от полностью свернутой до выпрямленной. При деформации в высокоэластичном состоянии молекулы полимера могут сильно удлиняться, а при застывании опять вернутся в исходное состояние.

Вязкотекучее состояние. Данное физическое состояние полимера возможно при значительном его нагревании. В данном случае пластик плавится и течет даже при небольшом на него воздействии. При этом состоянии активно двигаются не только сегменты, но и отдельные молекулы целиком.

При постепенном нагреве смена физического состояния полимера происходит в определенном диапазоне температурных значений, но за температуру перехода обычно берут среднюю температуру интервала. Такие переходы очень хорошо видны на термомеханических кривых (график зависимости деформации от температурных показателей).

На термомеханической кривой можно увидеть три участка кривой, которые соответствуют каждому из описанных выше состояний. Посмотреть термомеханическую кривую для аморфного пластика вы можете на иллюстрации ниже.

Как видно на графике, на первом участке с низкой температурой показатель деформации совсем маленький. Тхр – это температура хрупкости полимера. Тс – это температура стеклования, при которой пластик переходит с высокоэластичного состояния в стеклообразное и обратно. После перехода из стеклобразного в высокоэластичное состояние идет так называемое переходное состояние, когда повышение температуры приводит к определенному уровню деформации, сохраняющемуся на всем интервале температур для высокоэластичного состояния. При вязкотекучем состоянии уровень деформации повышается очень резко. Граничная температура для состояний высокоэластичности и вязкотекучести называется Тт – температура текучести. Рост деформации продолжается до достижения температуры разложения полимера.

Термомеханические кривые для различных типов полимерных масс будет отличаться, их вид зависит от степени кристалличности полимера и от молекулярной массы. К примеру, при малых значениях молекулярной массы высокоэластичная область на термомеханической кривой будет практически отсутствовать, а для частично-кристаллических полимеров температура текучести будет выше температуры плавления.

Читайте так же:
Как замерить куб кирпича

Для переработки полимеров наиболее значимым является интервал температур между текучестью и разложением, ведь от него зависит, насколько чувствительным будет процесс переработки к изменению параметров режима.

Компания Полимернагрев специализируется на изготовлении нагревательных элементов для нагрева пластика для различного промышленного оборудования. У нас вы можете купить такие типы нагревательных элементов для переработки полимеров:

Инфракрасные нагреватели для термоформования пластика и вакуум-формовочного оборудования: керамические инфракрасные излучатели, кварцевые ТЭНы, формовочные столы, кварцевые ик панели.

Нагреватели для горячеканальных систем и литьевого оборудования: патронные ТЭНы, спиральные нагреватели, гибкие ТЭНы для пресс-форм

Если у вас остались вопросы по нагреву полимеров, пишите их в форме ниже или отправляйте нам на почтовый ящик, постараемся ответить на все в самые короткие сроки.

Физики распечатали сжимающуюся при нагревании звезду

Левый столбец — компьютерные модели «звездчатого» материала, справа — фотографии экспериментальных образцов

Qiming Wang et al. / PRL, 2016

Физики из США и Сингапура напечатали на 3D-принтере каркас звездчатого многогранника, способного уменьшать свой объем при нагревании. При этом пластик, из которого был напечатан материал, вел себя как большинство известных веществ — расширялся. Ученые надеются, что исследования подобных сложных конструкций помогут в будущем создать материал, не меняющий своего объема при нагревании. Работа опубликована в журнале Physical Review Letters, кратко о ней сообщает Physics.

Большинство известных материалов, за редкими исключениями, при нагревании увеличивают свой объем — это касается стали и других металлов, асфальтобетона, различных полупроводников. Такое поведение связано с тем, что с ростом температуры молекулы в кристаллической решетке начинают интенсивнее колебаться, занимая больше места в пространстве. В результате увеличивается и объем, занимаемый материалом.

Тепловое расширение нередко осложняет создание различных объектов. Механическое напряжение, возникающее при нагреве рельсов, дорожного покрытия или даже кремниевых подложек для микроэлектроники, может привести к образованию трещин или сильно деформировать объекты.

В некоторых материалах может наблюдаться обратное явление — уменьшение объема с ростом температуры. Самый известный пример такого поведения — вода при температурах от 0 до +3,98 градуса Цельсия. Как правило, отрицательные коэффициенты теплового расширения существуют в узких диапазонах температур.

Результаты эксперимента по нагреву «звездчатого» материала. Справа — изменение объема в зависимости от температуры. Слева — компьютерная модель материала и его поведение при нагреве.

Qiming Wang et al. / PRL, 2016

В новой работе физики создали трехмерный материал, способный к сжатию при увеличении температуры в большом интервале — от 100 до 250 градусов Цельсия. Он состоит из звездчатых многогранников, скрепленных в трехмерную решетку. Выбор таких многогранников обосновали ранее теоретики. Согласно моделированию, за счет полостей в материале можно обеспечить его сжатие тогда, когда отдельные его элементы растягиваются.

Читайте так же:
Анкерные болты для кирпича нагрузка

Для ребер многогранников авторы выбрали два материала с сильно отличающимися коэффициентами теплового растяжения. В их основе лежал один и тот же полимер, но в один из материалов были добавлены наночастицы меди, сильно уменьшившие его тепловое растяжение. Для сборки звездчатых многогранников ученые использовали методику проекционной микростереолитографической 3D-печати. Она использует ультрафиолетовый проектор для отверждения материала в заданной области.

Эксперимент показал, что сжатие в «звездчатых» материалах начинается примерно при 100 градусах Цельсия. Максимальное уменьшение объема, зафиксированное авторами при 250 градусах Цельсия, составило около одного процента. Эта величина сильно зависела от доли медных наночастиц в материалах ребер, что позволяет подбирать свойства в широких пределах. Для сравнения, в случае железа такой же рост температуры обеспечил бы увеличение объема на полпроцента.

Авторы надеются, что такой подход к разработке позволит создать материалы с нулевым коэффициентом теплового расширения в широком рабочем диапазоне. Это позволит предотвратить разрушение конструкций, используемых в экстремальных термомеханических условиях.

Отрицательный коэффициент теплового расширения может быть вызван различными причинами. К примеру, в случае кварца или вольфрамата циркония за поведение ответственны необычные колебания кристаллической решетки — последний материал непрерывно сжимается в диапазоне температур от 0,3 до 1050 кельвинов. Некоторые полимеры способны сжиматься при небольшом повышении температур — это связано с тем, что их молекулы при нагреве получают больше «свободы» движения и из растянутого состояния сворачиваются в клубки. В случае трифторида скандия, о котором мы писали ранее, всему виной оказалась «нерешительность» материала совершить фазовый переход.

§ 14. Тепловое расширение

Из предыдущих параграфов нам известно, что все вещества состоят из частиц (атомов, молекул). Эти частицы непрерывно хаотически движутся. При нагревании вещества движение его частиц становится более быстрым. При этом увеличиваются расстояния между частицами, что приводит к увеличению размеров тела.

Изменение размеров тела при его нагревании называется тепловым расширением.

Тепловое расширение твердых тел легко подтвердить опытом. Стальной шарик (рис. 87, а, б, в), свободно проходящий через кольцо, после нагревания на спиртовке расширяется и застревает в кольце. После охлаждения шарик вновь свободно проходит через кольцо. Из опыта следует, что размеры твердого тела при нагревании увеличиваются, а при охлаждении — уменьшаются.

Читайте так же:
За что сидит кирпич

Тепловое расширение различных твердых тел неодинаково.

При тепловом расширении твердых тел появляются огромные силы, которые могут разрушать мосты, изгибать железнодорожные рельсы, разрывать провода. Чтобы этого не случилось, при конструировании того или иного сооружения учитывается фактор теплового расширения. Провода линий электропередачи провисают (рис. 88), чтобы зимой, сокращаясь, они не разорвались.

Рельсы на стыках имеют зазор (рис. 89). Несущие детали мостов ставят на катки, способные передвигаться при изменениях длины моста зимой и летом (рис. 90).

А расширяются ли при нагревании жидкости? Тепловое расширение жидкостей тоже можно подтвердить на опыте. В одинаковые колбы нальем: в одну — воду, а в другую — такой же объем спирта. Колбы закроем пробками с трубками. Начальные уровни воды и спирта в трубках отметим резиновыми кольцами (рис. 91, а). Поставим колбы в емкость с горячей водой. Уровень воды в трубках станет выше (рис. 91, б). Вода и спирт при нагревании расширяются. Но уровень в трубке колбы со спиртом выше. Значит, спирт расширяется больше. Следовательно, тепловое расширение разных жидкостей, как и твердых веществ, неодинаково.

А испытывают ли тепловое расширение газы? Ответим на вопpoс с помощью опыта. Закроем колбу с воздухом пробкой с изогнутой трубкой. В трубке (рис. 92, а) находится капля жидкости. Достаточно приблизить руки к колбе, как капля начинает перемещаться вправо (рис. 92, б). Это подтверждает тепловое расширение воздуха при его даже незначительном нагревании. Причем, что очень важно, все газы, в отличие от твердых веществ и жидкостей, при нагревании расширяются одинаково.

Подумайте и ответьте 1. Что называют тепловым расширением тел? 2. Приведите примеры теплового расширения (сжатия) твердых тел, жидкостей, газов. 3. Чем отличается тепловое расширение газов от теплового расширения твердых тел и жидкостей?

Сделайте дома сами

Используя пластиковую бутылку и тонкую трубку для сока, проведите дома опыт по тепловому расширению воздуха и воды. Результаты опыта опишите в тетради.

Интересно знать!

Нельзя после горячего чая сразу пить холодную воду. Резкое изменение температуры часто приводит к порче зубов. Это объясняется тем, что основное вещество зуба — дентин — и покрывающая зуб эмаль при одном и том же изменении температуры расширяются неодинаково.

Сжатие при нагревании: почему такое возможно?

Большинство материалов расширяются при нагревании, но существуют несколько уникальных веществ, которые ведут.

Большинство материалов расширяются при нагревании, но существуют несколько уникальных веществ, которые ведут себя по-другому. Инженеры Калифорнийского технологического института впервые выяснили, каким образом один из этих любопытных материалов, трифторид скандия (ScF3), сжимается при нагревании.

Читайте так же:
Схема автоклав для запаривания кирпича

Это открытие приведет к более глубокому пониманию поведения всех видов веществ, а также позволит создавать новые материалы с уникальными свойствами. Материалы, которые не расширяются при нагревании, — не просто научная диковинка. Они полезны в самых разных сферах, например, в высокоточных механизмах вроде часов, которые должны сохранять высокую точность хода даже при колебаниях температуры.

Когда нагревают твердые материалы, большая часть тепла уходит на колебания атомов. В обычных материалах эти колебания «раздвигают» атомы, в результате чего материал расширяется. Однако некоторые вещества имеют уникальные кристаллические структуры, которые заставляют их сокращаться при нагревании. Это свойство называется отрицательным тепловым расширением. К сожалению, эти кристаллические структуры очень сложны, и ученые до сих пор были не в состоянии увидеть, каким образом колебания атомов приводят к сокращению размеров материала.

Ситуация изменилась благодаря открытию в 2010 году отрицательного теплового расширения у ScF3, порошкообразного вещества с относительно простой кристаллической структурой. Чтобы выяснить, как его атомы вибрируют под воздействием высокой температуры, американские ученые использовали компьютер для моделирования поведения каждого атома. Также свойства материала изучались в нейтронной лаборатории комплекса ORNL в штате Теннеси.

Результаты исследования впервые дали четкую картину того, как сжимается материал. Для того чтобы понять этот процесс, нужно представить атомы скандия и фтора шарами, соединенными друг с другом пружинами. Более легкий атом фтора связан с двумя более тяжелыми атомами скандия. При повышении температуры все атомы начинают раскачиваться в нескольких направлениях, но из-за линейного расположения атома фтора и двух атомов скандия первый больше вибрирует в направлениях, перпендикулярных пружинам. С каждым колебанием фтор притягивает атомы скандия друг к другу. Поскольку это происходит по всему материалу, он сокращается в размерах.

Наибольшее удивление вызвал тот факт, что при сильных колебаниях энергия атома фтора пропорциональна четвертой степени перемещения (колебание четвертой степени или биквадратное колебание). При этом для большинства материалов характерны гармонические (квадратичные) колебания, такие как возвратно-поступательное движение пружин и маятников.

По заявлению авторов открытия, практически чистый квантовый оссцилятор четвертой степени никогда до этого не был зафиксирован в кристаллах. Это означает, что изучение ScF3 в перспективе позволит создать материалы с уникальными тепловыми свойствами.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector