Tpc-setka.ru

ТПЦ Сетка
9 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как повысить стойкость кирпича

Как усилить кирпичную стену

Кирпичные стены во все времена считались самыми крепкими и надежными. Однако, со временем и они подвергаются разрушениям. Соответственно, их несущая способность уменьшается. Если не предпринять срочных мер и не выполнить усиление стен, рано или поздно на них появятся такие дефекты, как перекосы, выпучивание, трещины и т.д.

Причина таких печальных последствий кроется в применении некачественных материалов (в том числе кирпича или цементного раствора). Естественное старение ускоряет процесс разрушения. Также часто причиной разрушения стен становятся:

  • ошибки при проектировании дома;
  • неверный расчет фундамента;
  • строительство соседних объектов;
  • недовложение стройматериалов (например, связующего);
  • человеческий фактор (некачественное выполнение кладки);
  • форс мажорные обстоятельства.

Усиление кирпичных стен выполняются по разным технологиям. Условно их разделяют на инновационные и традиционные.

Канонический способ укрепления стен из кирпича

К классическим вариантам ремонта разрушающихся кирпичных стен относятся такие технологии:

  • замена (полная или частичная) кирпичной кладки;
  • использование стальных обойм;
  • установка опоясывающих поясов;
  • монтаж разгрузочных балок и пр.

Все традиционные технологии основываются на нарушении эстетики фасадной части здания. Поэтому, когда речь идет реставрации наружной кладки строений, представляющих историческую ценность, такие методы не применяют.

Если же здание не является объектом исторического наследия, или, тем более, проектом предусмотрена его внешняя отделка, тогда традиционные технологии можно и нужно использовать. Однако следует знать, что современные, инновационные технологии восстановления кирпичной кладки все же менее затратны, выполняются быстрее и полностью восстанавливают прочность и целостность кладки.

Инновационные способы укрепления стен

Наиболее эффективным методом укрепления стен является инъектирование. Кроме прочих достоинств, нельзя не отметить универсальность данной технологии. Так, с помощью этого способа успешно выполняются ремонты фундаментов, стен, перекрытий и т.д., построенных из абсолютно любых стройматериалов.

С помощью инъектирования одинаково надежно заделываются трещины в кирпиче и бетоне.

Суть этого метода состоит в том, что в теле разрушающейся строительной конструкции просверливаются отверстия. В них, под давлением, закачиваются особые ремонтные составы. Это могут быть как микроцементы с добавками, так и растворы на полиуретановой или эпоксидной смолах.

В результате инъекционный состав заполняет образовавшиеся в конструкции пустоты. В итоге восстановленная стена перестает разрушаться и приобретает надежную гидроизоляцию. Данный метод используется тогда, когда необходимо быстро и надежно:

  • выполнить общее укрепление кирпичной стены;
  • произвести герметизацию и структурное склеивание стеновых трещин;
  • защитить стены от воздействия капиллярной влаги.

Усиление композитными материалами

С возникновением инновационных материалов появились аналогичные строительные технологии. Не обошли они и укрепление кирпичных стен. Так, сегодня на разрушающуюся конструкции закрепляют холсты, ленты или сетки, сделанные из высокопрочных материалов на основе стекловолокна или углерода. В качестве клея используют эпоксидные или цементные адгезионные материалы.

Композитные полотна с сотни раз легче и в десятки раз прочнее стали.

Признаться, пока в России усиление кирпичных стен композитными материалами только начинается. Хотя на Западе данная технология используется достаточно часто. У нас же так усиливают бетонные конструкции, но все больше компаний активно начинают применять композитные полотна для реставрации кирпичной кладки.

Суть такого способа состоит в том, что композитным материалом необходимо не просто проклеить разрушенный участок, а закольцевать его. Это означает, что при усилении капитальной стены без проемов придется штробить отверстия, в которые протянется углеволокно. Дальше концы композитного материала соединяют на внутренней части стены. Согласитесь, реализовать данную методику не так-то просто. По крайней мере без специального мощного строительного штробореза сделать это сверх сложно.

Еще одним минусом использования угле- или стекловолокон считается их дороговизна. Да и трудоемкость такого метода достаточно велика. Однако для тех, кто собирается раз и на столетие восстановить разрушающуюся кирпичную стену важно другое:

Использование углеволокон в укреплении кирпичной кладки увеличивает предельно-допустимую нагрузку на сжатие стены в 2-2,5 раз в сравнении с той, что требует СНиП.

Читайте так же:
Как восстановить планшет samsung tab 3 кирпич

Есть еще один момент, который, как правило, обычно игнорируется жителями нашего региона, но от которого не застрахован никто и никогда. Речь идет о сейсмоугрозе. Так вот в этом вопросе композитные материалы дадут форы всем остальным методам усиления стен.

Все рассмотренные выше технологии ремонта кирпичных стен давно и успешно применяются в компании «ЭкоСистема». Мы выполнили множество подобных работ как для частных клиентов, так и для крупных организаций. И если вы заметили, что с вашей кирпичной стеной не все в порядке, не откладывайте ее ремонт на потом. Звоните, и мы быстро, надежно и по доступной цене усилим кирпичную стену!

Ремонт и отделка квартир в новостройках Москвы и Подмосковья под ключ

  • Skip to content

Прочность и устойчивость каменной кладки

  • Станьте первым комментатором!
  • 1
  • 2
  • 3
  • 4
  • 5

ПРОЧНОСТЬ И УСТОЙЧИВОСТЬ КАМЕННОЙ КЛАДКИ —

Способность кладки воспринимать, не разрушаясь, нагрузку от вышележащих конструкций и других воздействий называют прочностью.

Прочность кладки зависит от свойств кирпича (камня) и раствора, из которых кладка сложена. Предел прочности при сжатии, например, кирпичной кладки, выполненной даже на высокомарочном растворе, при обычных методах возведения составляет не более 40. 50 % предела прочности кирпича. Объясняется это тем, что поверхности кирпича и шва кладки не идеально плоские, плотность и толщина слоя раствора в горизонтальных швах не везде одинакова и вследствие этого давление в кладке неравномерно распределяется по поверхности кирпича и вызывает в нем кроме напряжений сжатия напряжение изгиба и среза. Поэтому каменные материалы, слабо сопротивляющиеся изгибу, разрушаются в кладке раньше, чем сжимающие напряжения в них достигнут предела прочности при сжатии. Например, кирпич имеет в 4. 6 раз меньший предел прочности при изгибе, чем при сжатии.

Напряженное состояние в кладке возникает не только от сжимающих, а и от горизонтальных, изгибающих, вибрационных и других нагрузок. Способность кладки сохранять свое положение при действии этих нагрузок называют устойчивостью. Предельные величины ее предусмотрены «Строительными нормами и правилами». Под воздействием внешних нагрузок в кладке создается напряженное состояние, которое распространяется по схеме, показанной на рис.10.

Рис.10. Схема распространения напряжений в кладке

1 — кладка, воспринимающая нагрузку;

2 — опорная подушка;

Способность кладки сохранять свое положение при действии горизонтальных (например, ветровых) нагрузок называют устойчивостью. Это свойство ограничивает высоту кладки в зависимости от ее толщины и величины ветровых нагрузок. Например, стенка толщиной 250 мм при ветровой нагрузке более 400 Па не должна быть выше 2,25 м .

Если постепенно увеличивать нагрузку на кладку до величины, превышающей предел прочности ее, то сначала в отдельных кирпичах появятся вертикальные трещины (рис.11, а) преимущественно под вертикальными швами, там, где концентрируются напряжения растяжения и изгиба. При росте нагрузки трещины увеличатся, разделяя кладку на столбики (рис.11, б). Окончательное разрушение кладки происходит из-за выпучивания этих столбиков в результате потери ими устойчивости (рис.11, в). Напряженное состояние при осевом сжатии кладок из других каменных материалов аналогично напряженному состоянию кирпичной кладки.

Рис.11. Стадии разрушения кладки под нагрузкой

а — трещины в кирпичах;

б — разделение кладки на столбики;

в — выпучивание и разрушение кладки.

Внешние нагрузки, действующие на кладку, создают в ней напряженное состояние (рис.11). При нормальной эксплуатации (первая стадия) внутренние напряжения не вызывают видимых повреждений кладки. При увеличении нагрузки (вторая стадия) в отдельных кирпичах появляются трещины. Продолжающийся рост нагрузки приводит к развитию вертикальных трещин (третья стадия), однако кладка еще способна воспринимать действующие на нее внешние силы. Дальнейшее нарастание нагрузки расслаивает кладку на тонкие столбики (четвертая стадия). Кладка разрушается из-за выпучивания столбиков, т.е. из-за потери устойчивости конструкции, расчлененной вертикальными трещинами.

Читайте так же:
Циркулярная пила для резки кирпича

Рис.11. Стадии работы кладки при возрастании внешней нагрузки

а — первая; б — вторая; в — третья; г — четвертая; 1 — силы внутреннего напряжения; 2 — появление трещин; 3 — развитие вертикальных трещин: 4 — расслоение кладки

Как видно из графика (рис.12), прочность кладки мало зависит от системы перевязки швов.

Рис.12. График, иллюстрирующий прочность кладки

а — однорядной; б — многорядной; в — трехрядной

Толщина швов. С увеличением толщины швов уменьшается прочность кладки. Это обусловлено тем, что прочность раствора всегда меньше прочности кладочного материала. Однако и уменьшение толщины швов не повышает прочности кладки, так как уложенные кирпичи неровностями граней касаются друг друга и в этих местах вместо сжатия работают на изгиб, что снижает прочность кладки. Чтобы все кирпичи, уложенные в конструкции, работали на сжатие, нормируют толщину горизонтальных и вертикальных швов: толщина горизонтальных швов 10. 15 мм, вертикальных — 8. 15.

Влияние свойств раствора на прочность кладки . Чем ниже марка раствора в кладке, тем легче он сжимается и, следовательно, тем больше общие деформации кладки, а в каждом кирпиче — напряжения изгиба и среза. Поэтому, чтобы получить более прочную кладку, применяют соответственно раствор более высокой марки.

Однако повышение прочности раствора незначительно увеличивает прочность кладки. Гораздо большее значение имеет пластичность раствора. Пластичные растворы лучше расстилаются по постели кирпича, обеспечивая равномерную толщину и плотность шва. Это повышает прочность кладки за счет уменьшения напряжения изгиба и среза в отдельных кирпичах.

Влияние размеров и формы каменных материалов на прочность кладки . С увеличением высоты камня уменьшается количество горизонтальных швов в кладке и увеличивается пропорционально квадрату высоты камня сопротивление его изгибу. В связи с этим при одинаковой прочности камней более прочной оказывается кладка, выполненная из камней большей высоты.

При правильной форме камней швы в кладке заполняются раствором равномернее, чем при неправильной, лучше передается нагрузка от камня к камню, лучше перевязывается кладка и прочность ее более высока. На снижение прочности бутовой кладки, например, влияет главным образом то, что неправильная форма камней обеспечивает их соприкосновение лишь через от дельные участки, не создает хорошей перевязки кладки, значительную часть которой приходится заполнять раствором.

Влияние качества швов кладки на ее прочность . Хорошее заполнение горизонтальных и вертикальных швов раствором, равно мерное уплотнение и одинаковая толщина швов, правильная перевязка обеспечивают высокую прочность кладки. Низкое качество кладки, применение растворов, не соответствующих требованиям проекта, могут привести к разрушению кладки.

Чем толще шов, тем труднее достигнуть равномерной его плотности и тем в большей степени кирпич работает в кладке на изгиб и срез. При толстых швах увеличивается деформация и снижается прочность кладки. Поэтому для каждого вида кладки установлена определенная толщина швов, увеличение которой снижает прочность конструкций. Насколько качество кладки характеризуется равномерностью заполнения раствором и уплотнения горизонтальных швов, можно видеть на примере одного из испытаний. Одновременно из одного и того же кирпича и раствора выполняли кладку высококвалифицированные каменщики и каменщики низкой квалификации. Предел прочности кладки, выполненной высококвалифицированными каменщиками, оказался 5 МПа, каменщиками низкой квалификации — 2,8 МПа, т. е. в 1,8 раза меньше.

Плотность кладки обусловливает такие качества каменных конструкций, как высокая огнестойкость, большая по сравнению с другими материалами химическая стойкость, сопротивляемость атмосферным воздействиям и, как следствие этого, большая долговечность. В то же время большая плотность увеличивает теплопроводность кладки, поэтому нередко наружные кирпичные стены зданий приходится делать намного толще, чем это требуется по условиям прочности и устойчивости.

При уменьшении плотности каменных материалов с 1800 (кладка из керамического кирпича) до 800 (камни из ячеистого бетона) толщина стен и потребность в материалах уменьшаются на 55 %, а масса стен — на 80 %. Это значит, что для кладки выгодно применять материалы более низкой плотности (пустотелые, пористые), обладающие хорошими теплотехническими свойствами.

Читайте так же:
Мне станок для кирпича

На теплотехнические свойства каменных конструкций влияет также качество кладки: стены с плохо заполненными раствором швами легко продуваются и промерзают зимой.

ПРОЦЕСС КЛАДКИ. ИНСТРУМЕНТЫ И ПРИСПОСОБЛЕНИЯ

Процесс кладки . Процесс кладки состоит из рабочих операций, выполняемых в такой последовательности: установка порядовок; натягивание причалок для обеспечения правильности укладки кирпичей и рядов; подача и раскладка кирпичей на стене; перелопачивание раствора в ящике; подача раствора на стену и расстилание его под наружную версту; укладка наружной версты; расстилание раствора под внутреннюю версту; укладка внутренней версты; расстилание раствора под забутку; укладка забутки; проверка правильности выложенного ряда кладки. Последовательность укладки верст может быть другой и зависит от системы перевязки и метода организации труда. Кроме этих операций каменщикам приходится рубить кирпич, а также расшивать швы.

Инструменты и приспособления . Каждую рабочую операцию в процессе кладки выполняют определенными инструментами. Основные из них кельма, растворная лопата, расшивка, молоток-кирочка.

Кельма (рис.2, а) -отшлифованная с обеих сторон стальная лопатка с деревянной ручкой — предназначена для разравнивания раствора по кладке, заполнения раствором вертикальных швов и подрезки в швах лишнего раствора.

Рис.2. Инструменты для кирпичной кладки

б — растворная лопата;

в — расшивка для выпуклых и вогнутых швов;

г — молоток-кирочка;

д — швабровка.

Растворная лопатка (рис.2, б) служит для подачи и расстилания раствора на стене, перемешивания его в ящике.

Расшивками (рис.2, в) обрабатывают швы, т. е. придают им определенную форму. Профиль поперечного сечения и размеры расшивок подбирают в соответствии с заданной формой и толщиной швов.

Молоток-кирочку (рис.2, г) каменщик использует при рубке целого кирпича на неполномерные и при теске кирпича.

Швабровка (рис.2, д) предназначена для очистки вентиляционных и дымовых каналов от выступившего из швов раствора, а также для более полного заполнения раствором и заглаживания швов в каналах. На стальной ручке швабровки внизу закреплена между фланцами резиновая пластина размером 140 Х 140 Х 10(12) мм, которая является рабочим органом.

Качество кладки проверяют контрольно-измерительными инструментами (рис.3): отвесом, уровнем, правилом, угольником, шнуром-причалкой.

Рис.3. Контрольно-измерительные инструменты

б — рулетка;

в — складной метр;

г — угольник;

д — строительный уровень;

е — дюралюминиевое правило.

Отвесы , состоящие из стального конусообразного корпуса, крученого шнура и алюминиевой планки, (рис.3, а) служат для проверки вертикальности стен, простенков, столбов и углов кладки, т.е. для провешивания кладки. Отвесы массой 200. 400 г предназначаются для проверки правильности кладки по ярусам и в пределах высоты этажа, 600. 1000 г — для проверки наружных углов здания в пределах высоты нескольких этажей.

Строительный уровень применяют для проверки горизонтальности и вертикальности кладки. Длина уровня 300, 500 или 700 мм . Корпус уровня — из алюминиевого сплава, на корпусе укреплены две стеклянные трубки-ампулы, изогнутые по кривой большого радиуса, наполненные незамерзающей жидкостью так, что в них остается небольшой воздушный пузырек. При горизонтальном положении уровня пузырек, поднимаясь вверх, останавливается посредине между делениями ампулы. Смещение пузырька влево или вправо от этого положения показывает, что поверхность, на которую установлен уровень, не горизонтальна, и чем больше ее наклон к горизонту, тем больше смещается пузырек от среднего положения. Благодаря тому, что трубки расположены в двух направлениях, уровнем можно проверять не только горизонтальные, но и вертикальные плоскости.

Правило представляет собой отфугованную деревянную рейку сечением З0 Х 80 мм , длиной 1,5. 2 м или дюралюминиевую рейку специального профиля длиной 1,2 м , предназначенную для проверки лицевой поверхности кладки.

Читайте так же:
Размеры металлического сайдинга под кирпич

Деревянный угольник 500Х700 применяют для проверки прямоугольности закладываемых углов. Для каменных работ применяют также металлические угольники из уголкового профиля.

Рулетка и складной метр — мерительные инструменты, которыми размечают оси и положения конструкций, делают контрольные замеры кладки.

Для обеспечёния качественного выполнения каменной кладки и повышения производительности труда каменщиков используют малогабаритные ручные приспособления.

Причальные скобы (рис.4, а) для закрепления причального шнура. Скобы П-образной формы из пруткового стального профиля с заостренными концами или из листовой стали (рис.4, б) закрепляют в швах кладки, а скобы из листового металла надевают на кирпич, уложенный плашмя.

§ 7. Физико-механические свойства каменной кладки

Прочность кладки зависит от свойств кирпича (камня) и раствора, из которых кладка сложена. Предел прочности при сжатии, например, кирпичной кладки, выполненной даже на высокомарочном растворе, при обычных методах возведения составляет не более 40. 50 % предела прочности кирпича. Объясняется это тем, что поверхности кирпича и шва кладки не идеально плоские, плотность и толщина слоя раствора в горизонтальных швах не везде одинакова и вследствие этого давление в кладке неравномерно распределяется по поверхности кирпича и вызывает в нем кроме напряжений сжатия напряжения изгиба и среза. Поэтому каменные материалы, слабо сопротивляющиеся изгибу, разрушаются в кладке раньше, чем сжимающие напряжения в них достигнут предела прочности при сжатии. Например, кирпич имеет в 4. 6 раз меньший предел прочности при изгибе, чем при сжатии.

Рис. 12. Стадии разрушения кладки под нагрузкой:
а — трещины в кирпичах, б — расчленение кладки на столбики, в — выпучивание и разрушение кладки

Если постепенно увеличивать нагрузку на кладку до величины, превышающей предел прочности ее, то сначала в отдельных кирпичах появятся вертикальные трещины (рис. 12,а) преимущественно под вертикальными швами, там, где концентрируются напряжения растяжения и изгиба. При росте нагрузки трещины увеличатся, разделяя кладку на столбики (рис. 12,6). Окончательное разрушение кладки происходит из-за выпучивания этих столбиков в результате потери ими устойчивости (рис. 12,в). Напряженное состояние при осевом сжатии кладок из других каменных материалов аналогично напряженному состоянию кирпичной кладки.

Влияние свойства раствора на прочность кладки. Чем ниже марка раствора в кладке, тем он легче сжимается и, следовательно, тем больше общие деформации кладки, а в каждом кирпиче — напряжения изгиба и среза. Поэтому, чтобы получить более прочную кладку, применяют соответственно раствор более высокой марки.

Однако повышение прочности раствора незначительно увеличивает прочность кладки. Гораздо большее значение имеет пластичность раствора. Пластичные растворы лучше расстилаются по постели кирпича, обеспечивая равномерную толщину и плотность шва. Это повышает прочность кладки за счет уменьшения напряжения изгиба и среза в отдельных кирпичах.

Влияние размеров и формы каменных материалов на прочность кладки. С увеличением высоты камня уменьшается количество горизонтальных швов в кладке и увеличивается пропорционально квадрату высоты камня сопротивление его изгибу. В связи с этим при одинаковой прочности камней более прочной оказывается кладка, выполненная из камней большей высоты.

При правильной форме камней швы в кладке заполняются раствором лучше и равномернее, чем при неправильной, лучше передается нагрузка от камня к камню, лучше перевязывается кладка и прочность ее более высока. На снижение прочности бутовой кладки, например, влияет главным образом то, что неправильная форма камней обеспечивает их соприкосновение лишь через отдельные участки, не создает хорошей перевязки кладки, значительную часть которой приходится заполнять раствором.

Влияние качества швов кладки на ее прочность. Хорошее заполнение горизонтальных и вертикальных швов раствором, равномерное уплотнение и одинаковая толщина швов, правильная перевязка обеспечивают высокую прочность кладки. Низкое качество кладки, применение растворов, не соответствующих требованиям проекта, могут привести к разрушению кладки.

Читайте так же:
Коричневый кирпич с черным швом

Чем толще шов, тем труднее достигнуть равномерной его плотности и тем в большей степени кирпич работает в кладке на изгиб и срез. При толстых швах увеличивается деформация и снижается прочность кладки. Поэтому для каждого вида кладки установлена определенная толщина швов, увеличение которой снижает прочность конструкций. Насколько качество кладки характеризуется равномерностью заполнения раствором и уплотнения горизонтальных швов, можно видеть на примере одного из испытаний. Одновременно из одного и того же кирпича и раствора выполняли кладку высококвалифицированные каменщики и каменщики низкой квалификации. Предел прочности кладки, выполненной высококвалифицированными каменщиками, оказался 5 МПа, каменщиками низкой квалификации — 2,8 МПа, т. е. в 1,8 раза меньше.

Плотность кладки обусловливает такие качества каменных конструкций, как высокая огнестойкость, большая по сравнению с другими материалами химическая стойкость, сопротивляемость атмосферным воздействиям и, как следствие этого, большая долговечность. В то же время большая плотность увеличивает теплопроводность кладки, поэтому нередко наружные кирпичные стены зданий приходится делать намного толще, чем это требуется по условиям прочности и устойчивости.

При уменьшении плотности каменных материалов с 1800 (кладка из керамического кирпича) до 800 кг/см 3 (камни из ячеистого бетона) толщина стен и потребность в материалах уменьшаются на 55 %, а масса стен — на 80%. Это значит, что для кладки выгодно применять материалы более низкой плотности (пустотелые, пористые), обладающие хорошими теплотехническими свойствами.

На теплотехнические свойства каменных конструкций влияет также качество кладки: стены с плохо заполненными раствором швами легко продуваются и промерзают зимой.

Контрольные вопросы

  1. Какие виды кладок применяют для возведения стен зданий?
  2. В каких случаях выгоднее применять пустотелые керамические материалы и почему?
  3. Где следует применять силикатный кирпич, в каких случаях применение его не допускается и почему?
  4. Объясните первое правило разрезки кладки.
  5. Почему требуется укладывать камни в кладке с разрезкой параллельными и взаимно перпендикулярными плоскостями?
  6. Почему необходимо перевязывать швы в кладке?
  7. Как называются грани кирпича? ряды кладки?
  8. Как выполняют кладку в штрабах?
  9. От чего зависит прочность кладки?
  10. Какое влияние на прочность кладки оказывает раствор?
  11. Как влияет на прочность и теплотехнические свойства кладки качество выполнения ее?

Основные свойства огнеупорных материалов

Пригодность тех или иных огнеупоров в каждом отдельном случае оценивается в зависимости от их основных физических и рабочих свойств.

Изделия, изготовленные полусухим прессованием, более термостойки, чем изделия пластической формовки.

От значения термостойкости зависит величина напряжений, возникающих в кладке при ее нагревании и особенно при резком изменении температуры в печи; в связи с этим температурные швы кладки делают с учетом линейного расширения огнеупорных изделий. Например, линейное расширение шамота при 800 °С равно 4,5·10-6°C-1X800°С·100% = 0,36%, т. е. 1 м шамотной кладки дает при этой температуре удлинение 3,6 мм.

Коэффициенты теплопроводности огнеупоров

Наименование огнеупоровТемпературный коэффициент теплопроводности λ Вт/(м-К)Коэффициент λχΒт/(м*К) при рабочей температуреРабочая температура, к
Кирпич
Шамотный(0,72+0,0005 t)1,161,651620—1720
Пеношамотный(0,24+0,0002 t)1,160,591620
Легковесный шамот(0,09+0,000125 t) 1,160,291570
Динасовый(0,8+0,0006 t)1,162,111970
Магнезитовый(4,0—0,0015 t)1,161,241920—1970
Хромомагнезитовый1970
Хромитовый(1,1+0,00035 t) 1,161,9661920—1970
Диатомитовый(0,097+0,0002 t) 1,160,3091120
Изделия
Силлиманитовые (муллитовые)(1,45—0,0002 t)1,161,2991920
Корундовые(1,8+0,0016 t)1,165,241920—1970
Циркониевые(1,12+0,00055 t)1,162,4472020—2070
Карбофракс(18—0,009 t)1,1615,661670—1770
Угольные(20—0,030 t)1,1616,242270
Графитовые(140—0,035 t)1,1681,22270
Изоляционные
материалы:
Асбест распушенный(0,112+0,000167 t)1,160,2598700
Диатомит (вермикулит)(0,062+0,000225 t) 1,160,28900—1100
Шлаковая вата(0,05+0,000125 t) 1,160,167750

Теплоемкость огнеупоров при различных температурах

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector