Tpc-setka.ru

ТПЦ Сетка
5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как определить минералогический состав цемента

Из чего делается цемент состав

Цемент является одним из основных строительных материалов. Без цемента нельзя сделать бетон и другие необходимые строительные растворы. Из чего же сделан цемент и почему он обладает такими свойствами?

Цемент — это искусственное неорганическое гидравлическое вяжущее вещество.

Из чего и какими способами делают цемент

При взаимодействии с водой, водными растворами солей и другими жидкостями образует пластичную массу, которая затем затвердевает и превращается в камневидное твердое тело.

Цемент обладает способностью набирать прочность во влажных условиях, чем кардинально отличается от некоторых других минеральных вяжущих веществ, таких как: гипс, воздушная известь, которые твердеют только на воздухе.

Марка цемента — условная величина, которая обозначает, что прочность при сжатии будет не ниже обозначенной марки (200, 300, 400, 500, 600).

Цемент получают тонким измельчением клинкера и гипса. Клинкер — продукт равномерного обжига до спекания однородной сырьевой смеси, состоящей из известняка и глины определённого состава, обеспечивающего преобладание силикатов кальция.

При измельчении клинкера вводят добавки:

  • гипс для регулирования сроков схватывания,
  • до 15 % активных минеральных добавок (пиритные огарки, колошниковую пыль, бокситы, пески) для улучшения некоторых свойств и снижения стоимости цемента.

Обжиг сырьевой смеси проводится при температуре +1450…+1480 °C

По наличию основного минерала цементы подразделяются на:

  • романцемент — преобладание белита, в настоящее время не производится;
  • портландцемент — преобладание алита, наиболее широко распространён в строительстве;
  • глинозёмистый цемент — преобладание алюминатной фазы;
  • магнезиальный цемент (цемент Сореля) — на основе магнезита, затворяется водным раствором солей;
  • кислотоупорный цемент — на основе гидросиликата натрия , сухая смесь кварцевого песка и кремнефтористого натрия, затворяется водным раствором жидкого стекла.
  • биоцемент — производится при помощи биотехнологий.

В подавляющем большинстве случаев под цементом имеют в виду портландцемент и цементы на основе портландцементного клинкера.

Портландцемент получается при нагревании известняка и глины или других материалов сходного валового состава и достаточной активности до температуры +1450…+1480 °С. Происходит частичное плавление и образуются гранулы клинкера. Для получения цемента клинкер размалывают совместно примерно с 5% гипсового камня.

Типичный клинкер обычно содержит четыре главные фазы, называемые алит, белит, алюминатная фаза и алюмоферритная фаза.

  1. Алит является наиболее важной составляющей всех обычных цементных клинкеров, содержание его составляет 50—70 %. Алит относительно быстро реагирует с водой и в нормальных цементах из всех фаз играет наиболее важную роль в развитии прочности. Для 28-суточной прочности вклад этой фазы особенно важен.
  2. Содержание белита для нормальных цементных клинкеров составляет 15—30 %. Белит медленно реагирует с водой, таким образом слабо влияя на прочность в течение первых 28 суток, но существенно увеличивает прочность в более поздние сроки.

Через год прочности чистого алита и чистого белита в сравнимых условиях примерно одинаковы.

Прочность бетона

По прочности цемент делится на марки, которые определяются главным образом пределом прочности при сжатии половинок образцов-призм размером 40×40×160 мм, изготовленных из раствора цемента состава 1:3 с кварцевым песком.

Марки выражаются в числах М200 — М600 (как правило с шагом 100 или 50) обозначающим прочность при сжатии соответственно в 100—600 кг/см² (10—60 МПа).

Цемент с маркой 600 благодаря своей прочности называется «военным» или «фортификационным» и сто́ит заметно больше марки 500. Применяется для строительства военных объектов, таких как бункеры, ракетные шахты и так далее.

В настоящее время цемент делится на классы по прочности. Основное отличие классов от марок состоит в том, что прочность выводится не как средний показатель, а требует не менее 95 % обеспеченности (то есть 95 образцов из 100 должны соответствовать заявленному классу). Класс выражается в числах 30—60, которые обозначают прочность при сжатии (в МПа).

Для лучшего понимая из чего сделан цемент рекомендую посмотреть фрагмент передачи «Как это сделано» про производство цемента:

Портландцемент. Определение. Технология. Минералы.

Подробности Создано 09.05.2011 01:51 Обновлено 21.05.2012 00:46 Автор: Admin

В 1824 г. английский каменщик Аспдин взял в графстве Йорк патент на изготовление гидравлического вяжущего, которое он назвал портландцементом по его внешнему сходству с известным естественным камнем с острова Портланд в Доршире. Надо, однако, заметить, что температура обжига смеси, при которой Аспдин вначале оперировал, не превосходила температуру обжига извести. Так что полученный Аспдином продукт хотя и представлял цемент, но не был тем продуктом, под которым мы в настоящее время понимаем портландцемент.

Установить время открытия настоящего портландцемента в ту пору было затруднительно. И лишь сравнительно недавно было установлено, что приоритет открытия портландцемента, в полном смысле как мы его понимаем, принадлежит русскому технику Егору Челиеву, который в 1825 г. предложил и выполнил обжиг сырьевой смеси до температуры спекания и получил настоящий портландцемент, который им был назван силикатным. Вообще, это название более правильное, хотя до сих пор этот цемент и носит название портландского. Следует сказать, что большой вклад в развитие производства цемента и теории твердения его сделали русские, а после революции советские ученые А. Р. Шуляченко, Н. А. Белелюбский, И. Г. Малюга, академики А. А. Банков, П. А. Ребиндер и многие другие.

Так что такое портландцемент в современном его понимании? Портландцементом называется гидравлическое вяжущее вещество, получаемое тонким измельчением обожженной до спекания смеси глины и углекислого кальция, с преобладанием в продукте обжига силикатов кальция.

Спекшуюся сырьевую смесь, представляющую собой камневидные мелкие и крупные куски, называют клинкером.

Разбираемся из чего делают цемент

Получение портландцемента состоит как бы из двух технологических операций: получения клинкера путем обжига сырьевой смеси и помола этого клинкера в тонкий порошок.

Для получения клинкера портландцемента берется примерно 25 % глины и 75 % чистого известняка, т. е. состоящего на 100 % из углекислого кальция. Искусственно подобранная смесь или природный мергель указанного состава обжигается при температуре 1450 °С. В результате обжига из теплового аппарата выходит клинкер, который в дальнейшем размалывается в тонкодисперсный порошок, называемый цементом.

При помоле клинкера в цемент вносятся различные добавки для регулирования его свойств. В технологии получения цемента используются три технологические схемы, которые выполняются «мокрым», «сухим» и «комбинированным» способами. Ниже, на рисунке, показана технологическая схема получения портландцемента «мокрым» способом.

Наиболее сложной в этой схеме является операция обжига. Обжиг сырья осуществляется, как правило, во вращающихся печах различной длины. Печь условно разделена на шесть зон, в которых происходят по мере движения сырья различные процессы. В первой зоне при температуре 20-200 °С происходит испарение свободной воды из сырьевой смеси, во второй — до температуры 650 °С сгорают органические примеси и удаляется химически связанная вода. В третьей зоне с температурным интервалом 650-1200 °С минералы сырья разлагаются на отдельные оксиды, которые в экзотермической зоне до 1300 °С соединяются, образуя минералы C2S, C3A и C4AF. В пятой зоне — зоне спекания — образовавшаяся смесь переходит в расплав при температуре 1450 °С, в котором C2S частично насыщается оксидом кальция, образуя трехкальциевый силикат C3S. В последней зоне сырьевая смесь охлаждается, образуя клинкер в виде окатанных зерен серо-зеленоватого цвета. После охлаждения клинкер выгружается и подается на склад, где он выдерживается (магазинируется) и поступает в помольный цех.

Таким образом, в результате сложных химических превращений при обжиге в клинкере образуется ряд новых химических соединений, называемых минералами портландцемента, основными из которых являются четыре минерала, обеспечивающие портландцементу гидравлические свойства.

Это минералы:
— трехкальциевый силикат 3CaO·SiО2 (алит),
— двухкальциевый силикат 2CaO·SiО2 (белит),
— трехкальциевый алюминат ЗСаО·А12О3 (целлит),
— четырехкальциевый алюмоферрит 4CaO·Al2О3·Fe2О3 (браунмиллерит).
Для сокращения написания формул минералов принято обозначать их соответственно следующими обозначениями: C3S; C2S; C3A; C4AF. Среднее содержание минералов в обычном портландцементе составляет:
C3S = 60-37 %;
C2S = 37-15%;
С3А=15-7%;
С4AF = 10-18 %.
Если C3S : C2S > 4, то цемент называется — алитовым портландцементом,
а если C3S : C2S

Как определить минералогический состав цемента

Качество клинкера зависит от его химического и минералогического составов. Химический состав характеризуется содержанием в клинкере различных оксидов, а минералогический — количественным соотношением образующихся в процессе обжига минералов. По химическому составу портландцементный клинкер состоит в основном из (% по массе): СаО — 64—67; SiO2 — 21—25; А12О3 —4—8; Fe2O3 —2—4. Кроме того, в состав клинкера обычно входят (% по массе): 0,5—1 щелочей (Na2O+K2O); 0,5—5 MgO; 0,1—0,3 TiO2; 0,1— 0,3 P2O5.

Требования к химическим показателям цементов согласно ГОСТ 31108-2003 приведены в таблице 3.

В процентах массы цемента

Класс прочности цемента

Потеря массы при прокаливании, не более

Нерастворимый остаток, не более

Содержание оксида серы (VI) SO, не более

Содержание хлорид-иона CI, не более

* В цементе типа ЦЕМ III содержание хлорид-иона CI может быть более 0,10%, но в этом случае оно должно быть указано на упаковке и в документе о качестве.

** В отдельных случаях по специальным требованиям в цементах для преднапряженного бетона может быть установлено более низкое значение максимального содержания хлорид-иона Сl.

В клинкере могут быть также щелочные оксиды Na2O и K2O, перешедшие в него из сырьевых материалов и золы твердого топлива. Они вредят в том случае, если бетон изготовлен на заполнителях, содержащих аморфный кремнезем. Щелочи, реагируя с диоксидом кремния, образуют в водной среде водорастворимые силикаты калия и натрия с увеличением объема, что вызывает растрескивание бетона. Содержание Na2O и K2O в цементах при условии их применения в таких бетонов ограничивается до 0,6 %.

Главнейшие оксиды — SiO2; А12О3; СаО и Fe2O3— при обжиге взаимодействуют между собой, образуя клинкерные минералы, соотношение которых определяет свойства портландцемента. При осмотре шлифов цементного клинкера под микроскопом видно, что он состоит из кристаллов различной формы. Между ними размещено так называемое промежуточное вещество, представленное стекловидной фазой. Основные минералы клинкера: алит 3CaO-SiO2; белит 2CaO-SiO2; трехкальциевый алюминат ЗСаО×А12О3 и алюмоферриты кальция переменного состава от 8CaO-3Al2O3-Fe2O3 до 2CaO-Fe2O3. В практических расчетах алюмоферриты кальция обозначают одной формулой 4CaO-Al2O3-Fe2O3, соответствующей их среднему составу. Согласно ГОСТ 31108-2003 Суммарное содержание трехкальциевого и двухкальциевого силикатов (3СаО·SiO+2СаО·SiO) в клинкере должно быть не менее 67 % массы клинкера, а массовое отношение оксида кальция к оксиду кремния (СаО/SiO) — не менее 2,0.

Алит (алитовая фаза) состоит из трехкальциевого силиката. Однако отождествлять их по составу нельзя. При кристаллизации C3S из расплава он захватывает в свою структуру MgO, A12O3, Fe2O3 с образованием твердых растворов. Этот твердый раствор и называют алитом. В непрозрачных шлифах он представлен правильными призматическими кристаллами голубоватой окраски. В алитах промышленных клинкеров может содержаться (% по массе): 0,9—1,7 А12О3; 0,4—1,6 Fe2O3; до 0,3 Na2O; 0,1 К2О; 0,6 ТiO2 и др. На прочность и другие свойства портландцемента влияют форма кристаллов алита, их размеры, распределение по величине, степень закристаллизованности и т. д.

Белит (белитовая фаза) клинкера является b-формой C2S. Для двухкальциевого силиката характерен полиморфизм. Известно пять структурных форм C2S. При медленном охлаждении и значительном содержании двухкальциевого силиката в клинкере происходит переход b-модификаций в g-модификацию, не обладающую гидравлическими свойствами. При этом наблюдается рассыпание клинкера в порошок вследствие увеличения объема, обусловленного различием примерно на 10 % плотностей b- и g-модификаций. Однако в промышленных условиях присутствие в клинкере оксидов фосфора, хрома, алюминия стабилизирует и позволяет сохранить эту неустойчивую модификацию, обладающую гидравлическими свойствами.

В клинкерах, охлажденных сравнительно быстро, белит присутствует в виде округлых зерен со слабовыраженной штриховкой. При медленном охлаждении кристаллы белита имеют неправильную форму, зернистую структуру и зазубренные края, что связано с выделением из них при охлаждении веществ, ранее находившихся в твердом растворе. Стабильность b-формы зависит не только от вида и количества примесей, но и от размеров кристаллов. Чем мельче кристаллы, тем они устойчивее.

Трехкальциевый алюминат в виде кристаллов входит в состав промежуточной фазы. Точная его структура неизвестна. В промышленных клинкерах С3А растворяет MgO, SiO2, Na2O.

Алюмоферриты кальция вместе с алюминатами и клинкерным стеклом образуют прослойки между зернами минералов. Они являются твердыми растворами. Конкретный состав алюмоферритной фазы определяется соотношением Al2O3/Fe2O3 в сырьевой смеси и режимом охлаждения клинкера. В промышленных клинкерах соотношение Al2O3/Fe2O3 колеблется в пределах 2,2—2,3.

Наряду с главными клинкерными минералами в состав клинкера входит незакристаллизованное стекло, имеющее переменный состав со значительным количеством А12О3 и Fe2O3. Содержание стекла зависит от скорости охлаждения и состава клинкера. Кроме того, в клинкере могут присутствовать свободные, не вступившие в химическое взаимодействие СаО и MgO. При высоком содержании в портландцементе свободного оксида кальция, называемого также свободной известью, а также MgO происходит растрескивание и разрушение затвердевшего камня. Современная технология обеспечивает выпуск клинкера с минимальным количеством свободного СаО (не более 0,5—1 %). Действие в твердеющем портландцементе свободного оксида магния аналогично действию свободной извести. Содержание MgO в обычном клинкере ограничено 5 %. Допускается содержание оксида магния MgO до 6,0 % массы клинкера при условии положительных результатов испытаний цемента из данного клинкера на равномерность изменения объема в автоклаве.

Таким образом, портландцементный клинкер представляет собой смесь нескольких «минералов». Даже тонкоизмельченные зерна являются гетерогенными (неоднородными), так как каждый из основных минералов неизменно присутствует в любом из зерен.

Минералогический состав клинкера влияет на технологию производства портландцемента и его свойства. Чем больше содержание алита, тем труднее идет обжиг, тем выше должна быть его температура. Повышение содержания С3А и особенно C4AF облегчает спекание клинкера, улучшает образование обмазки. Содержание минералов в клинкере влияет и на производительность цементных мельниц. С увеличением количества C3S размалываемость его улучшается, а с увеличением содержания C2S ухудшается, что объясняется меньшей твердостью алита и большей его хрупкостью. Труднее измельчаются клинкеры с повышенным содержанием алюмоферритов и клинкерного стекла.

Знание содержания в клинкере важнейших минералов позволяет достаточно точно прогнозировать свойства портландцемента: скорость набора прочности при различных условиях твердения, стойкость в пресных и минерализованных водах, тепловыделение при твердении и др. Это позволяет в зависимости от вида сооружения и условий его эксплуатации подбирать цемент соответствующего минералогического состава.

Алит — важнейший минерал портландцементного клинкера, основной носитель его вяжущих свойств. Он обусловливает возможность достижения высокой прочности в первые сроки твердения и определяет показатели прочности в 28-суточном возрасте. С увеличением содержания алита в клинкере (от 40 до 70 %) прочностные показатели цемента возрастают в линейной зависимости.

При более длительном твердении — до одного года и выше — важную роль в формировании прочности цементного камня играет белит. Он взаимодействует с водой значительно медленнее алита и в первые сроки твердения обладает низкой прочностью. Однако со временем белит догоняет алит по прочностным показателям. Скорость взаимодействия минералов с водой определяется особенностями их структуры.

Трехкальциевый алюминат С3А активно участвует в процессе твердения, особенно в начальный период. Увеличение в клинкере содержания СзА за счет соответственного снижения количества алюмоферритов кальция переводит цемент в разряд быстротвердеющих. При увеличении содержания алюмоферритов кальция в цементах они сначала твердеют медленно, но в длительные сроки достигают высокой прочности.

Вяжущие свойства цемента зависят и от характера кристаллической структуры. Наибольшую гидравлическую активность имеют клинкеры со средним размером кристаллов 20—40 мкм. Только за счет оптимизации структуры клинкера без изменения его фазового состава прочность цементного камня может быть повышена на 9—10 МПа. Регулирование минералогического состава и структуры клинкера — важнейшие технологические приемы, обеспечивающие получение цементов с заданными свойствами.

Рациональный состав клинкера зависит от условий работы конкретного завода, состава обжигаемой смеси, вида топлива, типа печей и т. д. При его подборе руководствуются следующими положениями. Для получения в обжигаемом материале необходимого количества жидкой фазы суммарное содержание C3A+C4AF, которые расплавляются в зоне спекания, надо поддерживать в пределах 18—22 % при содержании 5—8 % С3А. При рекомендуемом содержании минералов-плавней рациональные пределы для суммы C3S+C2S составят 75—78 % при содержании C3S 52—62 % и C2S—14— 24 %. Поскольку клинкер помимо основных минералов содержит некоторое количество и других соединений, то сумма C3S+C2S+C3A+C4AF обычно составляет 96— 98 %.

Чаще для характеристики состава клинкера пользуются не процентным отношением оксидов и клинкерных минералов, а соотношениями между оксидами в виде соответствующих модулей и коэффициента насыщения. Коэффициент насыщения (КН), предложенный русскими учеными В. А. Киндом и В. Н. Юнгом,— наиболее важная характеристика состава сырьевых смесей и клинкера. Коэффициент насыщения представляет собой отношение количества оксида кальция в клинкере, фактически связанного с кремнеземом, к количеству его, теоретически необходимому для полного связывания двуоксида кремния в трехкальциевый силикат:

Если КН =1, то извести в клинкере достаточно, чтобы весь SiO2 превратился в C3S. При КН

Состав цемента. Из чего делают цемент

Если судить по масштабам применения в строительстве растворов и бетонов на основе минеральных вяжущих, кажется, что история искусственных камней на основе цементов насчитывает долгие века. Но по-настоящему отработанная технология производства и оптимальный состав цемента стали известны менее двух веков назад.

Изобретение камня

Камни домов доисторического времени скреплялись в стене с помощью глины, но сохраниться без обжига они не могли, и самые древние постройки, дошедшие до нас, были возведены с применением известкового раствора. Обожжённый и размолотый известняк (оксид кальция – Ca(OH)₂) после затворения водой твердеет, поглощая из воздуха углекислый газ, а потом опять превращается в камень. Основной недостаток известкового вяжущего – низкая влагостойкость, поэтому сегодня он применяется больше при изготовлении силикатного кирпича.

Другой вид воздушного минерального вяжущего (то есть набирающего прочность на воздухе) – гипс. Он получается при тепловой обработке и последующем размоле природного гипсового камня (CaSO4-2H2O) или природного ангидрида (CaSCu). Гипсовое вяжущее имеет огромную историю применения с древнейшего времени до сегодняшних дней. Самые яркие примеры – роскошные лепные и скульптурные украшения, листовые материалы (ГВЛ, ГКЛ) для сухих методов строительства и отделки.

Гидравлические вяжущие вещества

Область применения воздушных вяжущих ограничена теми местами, где готовые конструкции не подвергаются воздействию влаги, в противном случае приходится применять гидрофобизирующие (водоотталкивающие) добавки или проводить гидроизоляционные мероприятия, поэтому применение гидравлических вяжущих более удобно и распространено шире.

К ним относятся вещества, образующие гидратные (молекула воды входит в кристаллическую решетку как составная часть) соединения, когда превращение в камневидное тело и дальнейший набор прочности могут происходить во влажной среде, а воздействие воды в ходе эксплуатации конструкций не приводит к их разрушению.

Растворы и бетоны для выполнения водостойких конструкций приготавливают на основе гидравлической извести (из осадочных известковых пород особого состава – мергелей) и портландцемента, причем именно последний придает монолитным и сборным элементам здания необходимую прочность, а известковые растворы применяются там, где нагрузки минимальны.

История цемента

Попытки преодолеть низкую водостойкость известковых и гипсовых составов предпринимались с древнейших времен. Цемент (caementum в переводе с латыни — дробленый, битый камень) появился путем добавления в известь различных минеральных веществ, обладавших гидрофобными свойствами. Для этого использовали размельченные остатки кирпичей из обожжённой глины, различные вулканические породы. Так, в состав цемента, который применялся строителями Древнего Рима, входили пуццоланы – отложения пепла знаменитого вулкана Везувия.

Эксперименты продолжались долгие века, пока потребность в большом количестве прочного и недорогого вяжущего вещества не заставила строителей выработать оптимальную технологию по его производству. Решающий вклад в такие исследования внесли русский военный техник Егор Челиев, издавший книгу о цементе для подводных работ (1825), и каменщик из английского Лидса Джон Аспдин, получивший патент на портландцемент (1824). Это название происходит от английского острова Портленд, расположенного в проливе Ла-Манш и состоящего из известковых пород. Камни из карьера, находящегося на этом острове, считались самым престижным строительным материалом в Англии. Полученный Аспдином искусственный камень был очень похож на него цветом и прочностью.

Интересно, что технология Челиева более соответствует тому, что теперь называется портландцементом, а цемент Аспдина изготавливался без принятого сейчас спекания исходного сырья.

Технология производства

Цементное вяжущее у разных производителей может отличатся исходным сырьем, но основные технологические операции идентичны. Первая стадия – подготовка исходного минерального сырья, т. е. несколько стадий размельчения известковых камней и глины, смешивание этих компонентов в нужных пропорциях. Из чего состоит цемент? Обычно это 3 весовых части известняка и 1 часть глины. Иногда используется осадочная горная порода – мергель, где данные компоненты содержатся в нужной пропорции.

«Сухой» и «мокрый» способ

Существует два способа получения нужного состояния смеси: «сухой» и «мокрый». Если влажность компонентов высокая, глина и мягкий известняк (мел) растворяются в воде, затем из этой суспензии, называемой сырьевым шламом, вода сильным нагревом (испарением) удаляется. Получается равномерная тонкоизмельченная смесь. Более экономичный способ – «сухой», где нет стадии доведения шлама до кипения, а смесь измельчается механическим способом.

Далее во вращающихся печах – цилиндрах диаметром около 5 м, длиной около 200 м, имеющих уклон для перемещения сырьевой массы в процессе обжига, происходит образование клинкера – окатанных гранул, появляющихся в процессе спекания смеси при температуре 1450 ⁰С в результате физических и химических взаимодействий.

Клинкер охлаждается и выдерживается до двух недель перед окончательной операцией – совместным измельчением с определенным количеством гипса, который добавляется для замедления процесса схватывания. Здесь окончательно формируется состав цемента, на этой же стадии вводятся различные минеральные добавки, придающие вяжущему нужные специфические свойства.

Химическая основа

Необходимые свойства самого популярного вяжущего определяет химический состав цемента. В результате технологической обработки сырья клинкер становится соединением различных химических веществ в виде четырех основных минералов:

  1. Алит – трехкальциевый силикат – составляет большую часть клинкера – 50-60%. Присутствие в молекулярной решетке ионов марганца, алюминия и железа определяет прочность готовой растворной или бетонной смеси, набираемой в течении первых 28 суток.
  2. Белит – двухкальциевый силикат – составляет 15-30%, и он – основа прочности, набираемой конструкцией в более поздние сроки.
  3. Алюминатная фаза – трехкальциевый алюминат – 5-10%. Быстрая реакция алюмината с водой и возможное слишком быстрое схватывание требуют введения гипса, замедляющего этот процесс.
  4. Ферритная фаза – четырехкальциевый алюмоферрит – 5-15 %

Меняя процентный состав этих фаз, вводя дополнительные компоненты, можно производить цемент, состав и свойства которого будут наилучшим образом соответствовать конкретной ситуации в ходе строительства.

Виды цемента

Шлакопортландцемент получается при добавлении к портландцементному клинкеру гранулированного шлака – побочного продукта выплавки чугуна в доменных печах. Применение шлака снижает стоимость, а состав цемента, произведенного по такой технологии, придает конструкциям, выполненным на его основе, повышенную устойчивость к воздействию воды с насыщенным минеральным составом, например, морской.

Быстротвердеющий – это цемент с преобладанием в клинкере алита и алюминатной фазы, отличается особо тонким помолом – всё это ускоряет набор прочности.

Сульфатостойкий портландцемент применяется для гидросооружений, подводные части которых подвергаются постоянному воздействию веществ, вызывающих сульфатную коррозию. Из чего состоит цемент, предназначенный для таких ответственных конструкций? В клинкерном сырье до минимума сведено присутствие трехкальциевого алюмината и белита.

Портландцемент с пониженным тепловыделением при наборе прочности необходим для изготовления конструкций большой массы и объема, когда тепло, выделяемое экзотермической реакцией твердения, может привести к образованию трещин. Состав такого цемента похож на сульфатостойкий.

Белый цемент

Изделия, выполненные с использованием белого цемента, обладают повышенными эстетическими качествами. Присутствие в исходном сырье окиси железа и окиси марганца придает готовому порошку характерный серо-зеленый цвет, соответственно, состав белого цемента предполагает минимальное присутствие таких солей и использование для исходного сырья светлых, каолиновых сортов глины.

Существует еще много видов цементного вяжущего, обладающего специальными качествами: гидрофобный, глинозёмистый, водонепроницаемый расширяющийся, напрягающий, пластифицированный, песчанистый и т. д.

Состав и прочность

Важнейшим показателем качества цемента является прочность изделий, изготовленных на его основе. ГОСТом установлены необходимые показатели, которые обозначаются особой маркировкой. Цифра означает предел прочности на изгиб и сжатие при лабораторных испытаниях стандартных образцов, на устойчивость к нагрузкам которых влияет и состав цемента. М400 означает, что образцы выдержали нагрузку в 400 кг/см² (или 40 Мпа).

Исследования показывают, что минеральный состав исходного сырья – важнейший фактор, влияющий на прочность цементных растворов и бетонов. Правильный подбор компонентов позволяет найти нужную пропорцию между скоростью набора прочности и конечной величиной устойчивости к нагрузкам, которая только увеличивается с течением времени. Состав цемента М500 позволяет создавать балки и плиты, способные выдерживать колоссальные нагрузки.

Сегодня в мире производится огромное количество цемента самого различного качества. Выбор сырья для него часто определяется экономическими факторами, и при правильном отношении к строительному процессу следует знать, из чего состоит цемент, который будет использоваться, чтобы сделать правильный выбор и быть уверенным в прочности и долговечности будущего дома.

Портландцемент. Сырье, понятие о производстве, химический и минеральный состав клинкера.

Определение и классификация.Портландцементом называют гидравлическое вяжущее вещество, получаемое путем тонкого помола портландцементного клинкера с добавкой гипса. Двуводный гипс в количестве 1,5 … 3,5% вводят для регулирования сроков схватывания портландцемента.Портландцементный клинкер – продукт обжига до спекания сырьевой тонкодисперсной однородной смеси, состоящей преимущественно из известняка и глины. Такой состав сырья обеспечивает преобладание в клинкере высокоосновных силикатов кальция.

1) Бездобавочный – введение активных минеральных добавок не допускается, получают помолом лишь портландцементного клинкера с добавкой гипса. Бездобавочный портландцемент имеет в сокращенном обозначении индекс Д0.

2) Портландцемент с активными минеральными добавками. Так называют вяжущие, получаемые совместным помолом портландцементного клинкера и активной минеральной добавки, либо их смешиванием после раздельного измельчения. В качестве подобных добавок используют горные породы (диатомит, трепел, опока, вулканический пепел, пемза и т.д.) и твердые или пылеобразные отходы промышленности (доменные шлаки, нефелиновый шлам, золы уноса ТЭЦ), состоящие преимущественно из аморфного кремнезема.

3) Шлакопортландцемент (ШПЦ). К этой разновидности относят гидравлическое вяжущее вещество, которое получают совместным помолом портландцементного клинкера и доменного гранулированного шлака с добавлением гипса. Шлакопортландцемент можно изготавливать также и путем смешивания указанных компонентов уже после их раздельного измельчения. Содержание шлака в таком вяжущем составляет от 20 до 80 % по массе цемента.

4) Пуццолановый портландцемент (ППЦ). Это гидравлическое вяжущее вещество получают совместным помолом портландцементного клинкера, гипса и активной минеральной добавки в количестве 21…30 % или тщательным смешиванием этих же компонентов, измельченных раздельно. Учитывая повышенное количество активной минеральной добавки, к портландцементному клинкеру предъявляется требование в части содержания трехкальциевого алюмината – не более 8 %.

Сырьевые материалы.Основными сырьевыми материалами при производстве портландцементного клинкера являются известняк с высоким содержанием углекислого кальция (мел, плотный известняк …) и глинистые породы, содержащие SiO2, Al2O3, Fe2O3

Производство портландцемента состоит из следующих процессов: добычи сырья и доставки его на завод; подготовки сырья и смеси; обжига смеси — получения клинкера; измельчения клинкера с добавками — получения цемента.

Минералогический состав.Применяемые для производства портландцементного клинкера сырьевые материалы обеспечивают преобладание в нем высокоосновных силикатов кальция. Помимо этого, при взаимодействии с оксидамиAl2O3иFe2O3образуются отдельные группы минералов. Каждый из клинкерных минералов имеет свои специфические свойства.

Трехкальциевый силикат (алит) характеризуется химической формулой 3CaO·SiO2(сокращенная записьC3S). Содержание его в портландцементе составляет 40…65 %. Являясь химически активным минералом, оказывает решающее влияние на скорость твердения цемента. Алит быстро набирает прочность, образуя довольно плотный продукт гидратации. При взаимодействии с водой выделяет большое количество тепла.

Двухкальциевый силикат (белит) имеет химическую формулу 2CaO·SiO2(сокращенноC2S). По химической активности заметно уступает алиту. Продукт твердения белита, затворенного водой, в ранние сроки твердения имеет невысокую прочность, при этом выделяется очень мало тепла. Однако, в дальнейшем, при благоприятных условиях, в течение нескольких лет способен увеличивать прочность. Белита в портландцементе может содержаться от 15 до 40 %.

Трехкальциевый алюминат как химическое соединение выражается формулой 3CaO·Al2O33А). Имеет наибольшую химическую активность среди основных минералов портландцементного клинкера. Процесс его гидратации завершается в первые сутки твердения, при этом выделяется наибольшее количество теплоты. Однако продукт твердения трехкальциевого алюмината имеет низкую долговечность. Содержание в портландцементе С3А колеблется от 2 до 15 %.

Четырехкальциевый алюмоферрит (целит) принят в качестве клинкерного минерала как среднее значение содержащихся в портландцементном клинкере алюмоферритов кальция переменного состава. Химический состав выражается формулой 4CaO·Al2O3·Fe2O34АF). По химической активности занимает среднее положение между С3А и алитом. Продукт гидратации имеет прочность, меньшую, чем у алита. В портландцементе С4АFможет быть от 10 до 20 %.

В зависимости от минералогического состава различают следующие виды портландцемента:

– алитовый: содержание C3Sболее 60 %, а соотношениеC3S:C2Sболее 4;– белитовый: содержание C2Sпревышает 38 % при отношенииC3S:C2Sменее 1;– алюминатный, содержащий С3А больше 15 %;– алюмоферритный (целитовый), в котором С4АFсодержится более 18 %.

Химический состав клинкера колеблется в сравнительно широких пределах. Главные оксиды цементного клинкера — оксид кальция CaO, двуоксид кремния SiO2, оксиды алюминия Al2O3, железа Fe2O3, суммарное содержание которых – 95 – 97%. Кроме них в состав клинкера в виде различных соединений в небольших количествах могут входить оксид магния MgO, серный ангидрид SO3, двуоксид титана TiO2, оксиды хрома Cr2O3, марганца Mn2O3, щелочи Na2O и K2O, фосфорный ангидрид P2O3 и др. Содержание этих оксидов в клинкере колеблется в следующих пределах, %:

28.Показатели качества портландцемента (химический, минеральный, вещественный составы, марки (классы), водопотребность, сроки схватывания, тонкость помола, равномерность изменения объема). Активность, марки и классы портландцемента.

Минеральный состав выражает содержание в клинкере (в % по массе) главных минералов. Применяются расчетный и прямые экспериментальные методы определения минерального состава клинкера. Минеральный состав рассчитывают на основании данных химического анализа, который определяет содержание оксидов (в % по массе).

Вещественный состав цемента выражает содержание в цементе (в % по массе) основных компонентов: клинкера, гипса, минеральных добавок, пластифицирующих и гидрофобизующих добавок; он приводится в паспорте на цемент. Допускается введение в цемент при его помоле пластифицирующих или гидрофобизующих поверхностно-активных добавок в количестве не более 0,3% от массы цемента.

Тонкость помола цемента оценивается по стандарту путем просеивания предварительно высушенной пробы через сито №008 (размер ячейки в свету 0,08 мм); тонкость помола должна быть такой, чтобы через указанное сито проходило не менее 85% массы просеиваемой пробы.

Плотность портландцемента (без минеральных добавок) составляет 3,05-3,15. Его насыпная плотность зависит от уплотнения и у рыхлого цемента составляет 1100кг/м 3 , у сильно уплотненного – до 1600 кг/м 3, в среднем — 1300 кг/м 3.

Водопотребность цемента определяется количеством воды (в % от массы цемента), которое необходимо для получения цементного теста нормальной густоты. Нормальной густотой цементного теста считают такую его подвижность, при которой цилиндр-пестик прибора Вика, погруженный в кольцо, заполненное тестом, не доходит на 5-7 мм до пластинки, на которой установлено кольцо. Водопотребность портландцемента в пределах от 22 до 28 %. При введении активных минеральных добавок осадочного происхождения (диатомита, трепела, опоки) водопотребность цемента повышается и может достигнуть 32-37%.

Сроки схватывания определяют с помощью прибора Вика путем погружения иглы в тесто нормальной густоты. Началом схватывания считают время, прошедшее от начала затворения до того момента, когда игла не доходит до пластинки на 1-2 мм. Конец схватывания – время от начала затворения до того момента, когда игла погружается в тесто не более чем на 1-2мм. Начало схватывания цемента должно наступать не ранее 45 мин, а конец схватывания – не позднее 10 ч от начала затворения. Для получения нормальных сроков схватывания при помоле клинкера на цементном заводе вводят добавку двуводного гипса.

Равномерность изменения объема. Причиной неравномерного изменения объема цементного камня являются местные деформации, вызываемые расширением свободной СаО и периклаза МgО вследствие их гидратации. По стандарту изготовленные из теста нормальной густоты образцы-лепешки через 24 ч предварительного твердения выдерживают в течение 3 ч в кипящей воде. Лепешки не должны деформироваться, не допускаются радиальные трещины.

Марки (классы) — Марка портландцемента определяется испытанием стандартных образцов размером 4х4х16 см, изготовленных из цементно-песчаного раствора 1:3 (по массе) через 28 суток твердения (первые сутки — в формах во влажном воздухе, затем без форм в воде).

Марка-предел прочности (сжатии – изгибе)

400-39,2-5,4 (55), 500-49-5,9(60), 550-53,9-6,1(62), 600-58,8-6,4(65)

Парка порталнд. – класс прочности

300-22,5Н, 400-32,5Н, 400Б-32,5Б, 500-42,5Н, 500Б-42,5Б, 550-52,5Н, 600-52,5Б

Класс и марка выражаются в разных единицах измерения – в МПа и кгс/см 2 соответственно. Различия в численных значениях класса и марки при выражении их в одинаковых единицах измерения обусловлены только разными условиями испытания цемента.

Активность и марки портландцемента. Активность и марку определяют испытанием стандартных образцов-призм размером 4х4х16 см, изготовленных из цементно-песчаной растворной смеси состава 1:3 (по массе) и В/Ц = 0,4 при консистенции раствора по расплыву конуса 106-115 мм. Черех 28 сут твердения (первые сутки образцы твердеют в формах во влажном воздухе, а затем 27 сут – в воде комнатной температуры), образцы-призмы сначала испытывают на изгиб, затем получившиеся половинки призм – на сжатие. Портландцемент разделяют на марки 400, 500, 550, 600.

У быстротвердеющих портландцементов нормируется не только 28-суточная прочность, но и начальная, 3-суточная.

голоса
Рейтинг статьи
Читайте так же:
Как очистить забор от цемента
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector