Энергозатраты при производстве цемента
Энергозатраты при производстве строительных материалов. Способы снижения энергозатрат при строительстве и эксплуатации строительных объектов. Энергоэффективность строительных объектов.
Производство строительных материалов связано с использованием высоких температур для получения требуемого минералогического состава и структуры материала с высокими физикотехническими свойствами. Например, при варке стекла температура достигает 1500°С и выше, при обжиге цементного клинкера – 1450°С, извести – 1100–1200°С, керамического кирпича – 1000–1100°С и т.д. Кроме того, для эффективного проведения технологического процесса и протекания физикохимических реакций формирования структуры требуется предварительное высокодисперсное измельчение компонентов сырьевых смесей, что связано с большими затратами электроэнергии. Это является объективной реальностью. С учетом многотоннажных масс, перерабатываемых в производстве строительных материалов, становится понятной та большая доля энергоресурсов, используемых в этой промышленности.
В общем объеме потребляемого топлива в строительном комплексе расходы на производство цемента составляют 37,6 %, извести – 10,7, стекла – 9,4, плитки керамической – 4,6, кирпича керамического – 4,6 %. Таким образом, выпуск этих пяти видов стройматериалов отвлекает на себя 66,9 % всех энергоресурсов, в то время как на изготовление силикатного кирпича и ячеистого бетона вместе взятых расходуется только 3,4 % от всего энергопотребления отрасли.
Анализ динамики энергопотребления в производстве строительных материалов за последние пять лет свидетельствует о снижении энергозатрат на единицу продукции. По всем этим направлениям не могло быть существенного снижения энергозатрат, поскольку в рассматриваемый период технология их производства не менялась. В случае, когда речь идет о сложившейся технологии, экономия энергозатрат связана практически только с уровнем эксплуатации действующего оборудования.
Используемые в настоящее время в производстве некоторых видов стройматериалов технологии, технические решения и оборудование являются высокоэнергозатратными.
Вторым направлением экономии невозобновляемых видов топлива является применение топливосодержащих отходов при обжиге цементного клинкера, как это делается в мире, когда используется все, что горит. Таким образом можно замещать основное топливо на 20–40 %.
С целью снижения расхода топлива УП “НИИСМ” разработана технология производства извести сухим способом с применением аппаратов скоростной термообработки, позволяющих ускорить процессы тепло и массообмена при сушке и обжиге в несколько сот раз.
Главным направлением энергосбережения в жилых зданиях является повышение теплозащитных свойств ограждающих конструкций.Чтобы «вписаться» в нормативы, задаваемые новыми СНиПами, прежде всего строителям приходится использовать новые эффективные теплоизоляционные материалы и конструкции.
Второе по значимости направление энергосбережения в жилых зданиях — замена устаревших окон и дверей в зданиях. Окна остаются наиболее уязвимым местом в ограждающих конструкциях. Сегодня современные оконные конструкции с трехслойным остеклением предлагает целый ряд отечественных и зарубежных фирм.
Кроме экономии энергозатрат с помощью механической вентиляции можно экономить за счет нагрева приточного воздуха вытяжным путем теплопередачи (рекуперация).
Регулирование подачи тепла
Возможно развитие направления поквартирного регулирования теплового режима. В настоящее время в новом строительстве обязательным является установка термостатов перед каждым отопительным прибором. Хотя это решение связано со значительными затратами (один термостат соизмерим по стоимости с конвектором, перед которым он ставится), оно позволяет повысить комфортность и сократить теплопотребление на отопление за счет учета теплопоступлений с солнечной радиацией и от бытовых тепловыделений. Однако за рубежом одновременно с термостатом устанавливают на отопительный прибор теплоизмеритель, как правило испарительного типа, позволяющий жильцу платить меньше за отопление, если потребление тепла уменьшается. У нас такие измерители не устанавливаются, и ничто не мешает жильцу жить комфортно в тепле и при открытых термостате и форточке, через которую «сбрасываются» все избытки тепла.
Во многих жилых домах теплоноситель распределен неравномерно по всему зданию. Очень часто на верхних этажах и посередине дома жарко, а в угловых комнатах и на нижних этажах очень холодно. Для решения этой проблемы существуют балансировочные вентили, позволяющие отрегулировать отопление дома, сделать его сбалансированным и равномерным.
Важным направлением энергосбережения является организация учета потребления тепла, электричества и воды.
Аналогичные результаты могут быть достигнуты при обжиге извести по сухому способу. Затраты ТЭР составят 200-210 кг у.т/т по сравнению 288,6 кг у.т/т в настоящее время
Какие же меры предлагает принять белорусская строительная наука? Снижение энергозатрат на производство строительных материалов можно обеспечить за счет выполнения следующих мероприятий.
Энергозатраты при строительстве. Применяемые ныне полносборные конструктивные системы и возводимые здания из кирпича высотой более 5 этажей являются материалоемкими и потребляют значительное количество энергоресурсов. При переходе на строительство жилых домов нового поколения, проекты которых разработаны учеными, возможно снижение их удельной материалоемкости и соответственно энергозатрат. Если в расчете на 1 м 2 общей площади жилья в 1998 году удельные энергозатраты составляли 284 кг усл. топлива, то уже до 2020 года предусмотренных объемов зданий нового поколения снижение совокупных энергозатрат может составить около 8650 тыс. тонн условного топлива. Новые требования, предъявляемые к термическому сопротивлению ограждающих конструкций, позволяют уже сегодня проектировать и строить здания, удельный расход тепловой энергии при эксплуатации которых соответствует современным мировым стандартам. В этих целях предусматривается также применение систем утилизации выбросного воздуха, включающих устройства для принудительной вентиляции воздуха и теплообменники, обеспечивающие возврат тепла в помещения [3].
Перспективы применения энергосберегающих технологий в строительном комплексе Республике Беларусь
В производстве строительных материалов, по мнению специалистов, наиболее высок удельный вес энергозатрат в себестоимости продукции. Так, при производстве цемента доля энергоресурсов составляет 56%, извести — 49%, керамического кирпича — 28,7-53%, силикатных стеновых материалов — 11,2-37,7%. На различных предприятиях составляющая энергоресурсов в материалах меняется, и это зависит от применения энергосберегающих технологий. Анализ показывает, что энергозатраты в республике велики — намного выше, чем в других странах. Такое положение связано с теми временами, когда, по выражению одного из известных политиков, мы были развращены обилием энергетических и сырьевых ресурсов.
Ученые ГП «НИИСМ», БелНИИС, НИПТИС и других центров считают, что одним из путей экономии ТЭР в производстве цемента и извести по мокрому способу является снижение влажности шлама. В настоящее время влажность цементного шлама колеблется от 44-47% на АО «Красносельскцемент», до 39-40% на ПО «Кричевцементношифер». Соответственно расход ТЭР на обжиг клинкера составляет 241,7 кг у.т/т на ПО «Кричевцементношифер» и 269,0 кг у.т/т на АО «Красносельскцемент». Затраты топлива на обжиг 1 тонны клинкера по сухому способу на 70-80 кг ниже, чем по мокрому.
В области теплоизоляционных материалов предлагается создать производство теплоизоляционных плит из минеральной ваты на неорганическом связующем. Такая технология разработана ГП «НИИСМ» по способу гидромасс с применением местных сырьевых материалов и неорганического связующего. Технология позволяет получать плиты марки 100 с физико-механическими свойствами, сопоставимыми с плитами марки 175-200, полученными по сухому способу. Это предопределяет снижение энергозатрат на 35%. Для марки 100 по мокрому способу они составляют 119 кг у.т/м 3 (топливо+электроэнергия), для марки 175-200 по сухому способу, выпускаемых в настоящее время, расход топлива — 158 кг у.т/м 3 .
Исследования показали, что при производстве керамических стеновых материалов предприятия, оснащенные туннельными печами с шириной канала 4,7 м в цельнометаллическом корпусе, имеют самые низкие расходы топлива на тысячу штук кирпича. Это Минский ЗСМ — 184 кг у.т/1000 шт. усл. кирпича и Радошковичский КЗ — 175 у.т/ 1000 шт. усл. кирпича. В среднем же по подотрасли расход топлива составляет 254 кг у.т/1000 шт. усл. кирпича. Значительная экономия энергоресурсов может быть достигнута при использовании теплообменных устройств для утилизации тепла отходящих газов туннельных печей. Резервы экономии энергоресурсов заложены в технологии производства — в снижении формовочной влажности изделий, повышении пустотности керамического кирпича [3].
Снижения затрат топлива и энергии при производстве только перечисленных выше строительных материалов можно достичь, внедряя новые технологии, новое оборудование, тепловые агрегаты. Это связано с крупными капитальными вложениями. Эта проблема решается на уровне правительства, министерств и других органов центрального управления.
Заключение
Таким образом, в настоящее время научно-исследовательские институты и промышленные производители предложили целую гамму технологических решений, обеспечивающих рост энергоэффективности жилых домов: теплоизоляция фасадов, легкие бетоны, оконные конструкции, системы вентиляции с рекуперацией тепла, широко корпусные конструкции домов, системы учета и регулирования тепла и т.д. Все эти решения в достаточной степени известны специалистам и при наличии достаточных стимулов могут быть оперативно внедрены в практику строительства. Главным лимитирующим фактором применения энергоэффективных технологических решений в строительном комплексе на сегодняшний день является отсутствие скоординированной и целенаправленной государственной политики. Важнейшей задачей является формирование базы строительных нормативов. Нормативы должны формироваться на долгосрочную перспективу, задавая участникам рынка ориентиры на будущее, образуя своего рода технологические коридоры. Помимо мер принуждения, необходимо создание системы экономических стимулов, поощряющих внедрение энергоэффективных технологий: налоговых льгот, субсидий, грантов на проведение НИОКР и создание зон энергетической эффективности. Серьезные усилия требуются от государства и для решения задачи формирования квалифицированных потребителей энергоэффективных решений в домостроении. Речь идет, во-первых, о создании сегмента частных доходных домов, владельцы которых прямо заинтересованы в снижении издержек по эксплуатации и смогут выступать равными партнерами строительных компаний. Второе направление — создание профессиональных управляющих компаний в ЖКХ, предоставляющих услуги энергосервиса. Это означает, что они должны преобразовывать коммунальные ресурсы, приобретаемые у ресурсоснабжающих организаций (электроэнергию, тепло, воду), в «параметры комфорта» для жильцов дома (температуру и влажность воздуха в помещениях, температуру и давление воды в водопроводе, бесперебойность электроснабжения). Важную роль предстоит сыграть государству в ликвидации безграмотности населения в вопросах энергосбережения, начиная со школы и заканчивая подготовкой и переподготовкой кадров в профессиональных учебных заведениях. Также необходимо содействие государства в распространении «передового опыта» в сфере энергоэффективности.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Энергозатраты при производстве цемента
Проверил: ст. препод.
В этом реферате приведены основные направления снижения энергетических затрат при производстве стали, цемента, сборного железобетона. Также описаны: основные источники потерь цемента при его производстве, транспортировке, применении; эффективные направления снижения расхода металла в железобетонных конструкциях; проблемы экономного расходования лесоматериалов.
При изготовлении большинства строительных материалов основная часть затрат падает на сырье и топливо. На производство строительных материалов и конструкций ежегодно расходуется около 50 млн. т условного топлива. В табл. 1 приведен расход условного топлива на производство основных видов неметаллических строительных материалов и изделий. Наибольшая доля затрат на топливо характерна для себестоимости металлов, цемента, пористых заполнителей, керамических стеновых материалов, стекла.
Экономия топлива достигается интенсификацией тепловых процессов и совершенствованием тепловых агрегатов, снижением влажности сырьевых материалов, применением вторичного сырья, промышленных отходов и других технологических приемов. При производстве стали наиболее эффективной в тепловом отношении является кислородно-конвертерная плавка, основанная на продувке жидкого чугуна кислородом. Коэффициент использования теплоты в кислородных конверторах достигает 70%, что намного выше, чем в других сталеплавильных агрегатах. Применение кислорода позволяет уменьшить на 5—10 % расход топлива и при мартеновском способе. Более полно используется теплота отходящих газов в двухванных мартеновских печах. Прогрессивным способом является получение стали прямым восстановлением из руд, минуя доменный процесс. При этом способе отпадают затраты на коксохимическое производство, являющееся основным при доменном процессе.
В цементной промышленности снижение затрат топлива достигается обжигом клинкера по сухому способу, получением многокомпонентных цементов, применением .минерализаторов при обжиге клинкера и различных типов теплообменных устройств, обезвоживанием шлама, низкотемпературной технологией, полной или частичной заменой глины такими промышленными отходами, как золы, шлаки и др. Один из главных резервов снижения расхода топлива в производстве цемента — уменьшение влажности шлама. Каждый процент снижения влажности шлама позволяет уменьшить удельный расход топлива на обжиг клинкера в среднем на 117—146 кДж/кг, т. е. на 1,7—2 %. Удельный расход теплоты на обжиг при сухом способе составляет 2900—3750 кДж/кг клинкера, а при мокром в 2—3 раза больше. При введении в сырьевой шлам доменных шлаков или зол ТЭС расход топлива снижается на 15—18%. При выпуске шлакопортланд-цемента экономия топлива дополнительно составляет в среднем 30—40 % по сравнению с чистоклинкерным портландцементом.
В нашей стране разработана технология низкотемпературного синтеза клинкера с использованием в качестве каталитической среды хлористого кальция. Эта технология обеспечивает снижение затрат теплоты на обжиг и помол клинкера на 35—40 % и такое же повышение производительности печей.
К энергоемким отраслям промышленности строительных материалов относится и производство сборного железобетона. На 1 м^3 сборного железобетона в среднем расходуется более 90 кг условного топлива. До 70 % теплоты идет на тепловую обработку изделий. Тепловую эффективность производства сборного железобетона можно существенно повысить, снизив тепловые потери, связанные с неудовлетворительным состоянием пропарочных камер, тепловых сетей, запорной арматуры и средств контроля расхода пара.
Непроизводительные потери теплоты уменьшаются при повышении теплового сопротивления пропарочных камер с помощью различных теплоизоляционных материалов и легких бетонов. Более экономичными по сравнению с наиболее распространенными явными пропарочными камерами являются вертикальные, туннельные, щелевые, малонанорные камеры. В последних, например, расход пара на 30—40 % ниже, чем в ямных.
Наряду с уменьшением тепловых потерь важнейшее значение для экономии топливно-энергетических ресурсов в производстве сборного железобетона приобретает развитие энергосберегающих технологий: применение высокопрочных и быстротвердеющих цемситов, введение химических добавок, снижение температуры и продолжительности нагрева, нагрев бетона электричеством и в среде продуктов сгорания природного газа и др. Ускорению тепловой обработки способствуют способы формования, обеспечивающие применение более жестких смесей и повышение плотности бетона, использование горячих смесей, совмещение интенсивных механических и тепловых воздействий на бетон. Ускорение тепловой обработки достигается при изготовлении конструкций из высокопрочных бетонов. Длительность тепловой обработки бетонов марок М 600—М 800 можно снизить с 13 до 9—10 ч без перерасхода цемента. Эффективной технологией ускоренного твердения является бескамерный способ, основанный на создании искусственного массива бетона пакетированием. Перспективны способы тепловой обработки бетона в электромагнитном поле и с применением инфракрасных лучей. В южных районах страны удельные затраты теплоты на ускорение твердения бетона можно существенно снизить, используя солнечную энергию.
В производстве керамических стеновых материалов и пористых заполнителей эффективным направлением экономии кондиционного топлива является применение топливосодержащих отходов промышленности. Так, применение в качестве топливосодержащей добавки отходов углеобогащения позволяет экономить при получении стеновых керамических изделий до 30 % топлива, исключает необходимость введения в шихту каменного угля.
Наряду с экономией топлива снижение материалоемкости строительных изделий в большой мере достигается рациональным использованием исходных компонентов и в особенности таких, как цемент, сталь, древесина, асбест и др. Экономия этих материалов достигается на всех этапах их производства и применения.
Основным источником потерь цемента при его производстве является вынос в результате несовершенства пылеулавливающих устройств помольных агрегатов. Перевозка цемента должна осуществляться в специализированных транспортных средствах. При транспортировании в цементовозах потери цемента при погрузочно-разгрузочных работах в среднем в 10 раз меньше, чем в крытых вагонах, в 40 раз меньше, чем в открытом подвижном составе. Одна из причин перерасхода — смешивание используемых цементов различных марок и видов при отсутствии достаточного количества емкостей для их хранения. В этих случаях вынужденно применяют расходные нормы для худшего из смешанных цементов, что приводит к их перерасходу на 6—8 %. Важное значение имеет применение кондиционных заполнителей бетона. Каждый процент загрязненности щебня равнозначен дополнительному расходу примерно 1 % цемента. В табл.2 приведено возможное снижение расхода цемента при обогащении мелкозернистых песков укрупняющими добавками.
Нерационально применение цемента марки 400 для изготовления бетонов марок М 100 и М 150, а также растворов марок 50 и 75. В этих случаях значительное снижение расхода цемента можно достичь введением в бетонные и растворные смеси минеральных дисперсных добавок, например, золы-уноса ТЭЦ.
Большое значение для экономного использования цемента имеет обоснованный выбор области наиболее эффективного применения цемента с учетом его минералогического состава и физико-механических характеристик. Например, для сборного железобетона, подвергаемого тепловой обработке, наиболее пригодны цементы с содержанием СзА до 8%. Расход цемента увеличивается по мере роста его нормальной густоты (табл.3), поэтому желательно его применение с минимальной нормальной густотой.
На предприятиях по производству бетона и сборного железобетона значительная экономия цемента может быть достигнута при оптимизации составов бетонов, применением смесей повышенной жесткости с уплотнением на резонансных и ударных виброплощадках, предварительным разогревом бетонных смесей и выдерживанием изделий после тепловой обработки, увеличением продолжительности тепловой обработки, расширением объема изготовления конструкций с минусовыми допусками, совершенствованием технологического оборудования и контрольно-измерительной аппаратуры.
Одно из наиболее перспективных направлений снижения расхода цемента — применение химических добавок. Такие традиционные химические добавки, как СДБ, позволяют снижать расход цемента на 5—10%. Возможное снижение расхода цемента при применении новейших добавок суперпластификаторов составляет 15-25’%.Дополнительный источник экономии цемента при высоком качестве бетона — применение статистического контроля прочности. Назначение требуемой прочности бетона с учетом его однородности обеспечивает при повышенной культуре производства снижение расхода цемента на 5—10 %.
Экономия металла — важнейшая народнохозяйственная задача. В настоящее время в строительстве ежегодно используется 31—33 млн. т. черных металлов, из которых 12—13 млн. т. расходуется на арматуру для железобетонных конструкций, около 8 млн. т. на фасонный и листовой прокат для изготовления металлоконструкций и опалубочных форм и 11—12 млн. т. на трубы.
Самое эффективное направление снижения расхода металла в железобетоне—применение для арматуры вы-сокопрочной стали. Арматурная сталь разных классов и видов является в известных пределах взаимозаменяемой. Количество стали любого класса (Т) может быть выражено в условно эквивалентном по прочности приведенном количестве стали класса А — I (Т’)
где Кпр—коэффициент приведения стали данного класса к стали класса А-1.
В табл.4 приведены значения коэффициента приведения и экономии металла при использовании арматурной стали различных классов.
Значительный резерв по экономии металла обеспечивается при изготовлении напряженной арматуры из высоко прочной проволоки и канатов. Экономия металла достигается также при более точных расчетах конструкций в соответствии с действительными условиями их работы под нагрузкой, приближением армирования к требованиям расчета, оптимизацией конструктивных решений.
При изготовлении арматурных изделий для сборного железобетона экономию стали получают при сварке сеток и каркасов на автоматических линиях с продольной и поперечной подачей стержней из бухт, при расширении всех видов контактной сварки, безотходной стыковке стержней, в том числе разных диаметров, изготовлении закладных деталей методом штамповки.
Существенная экономия металла достигается при рациональном проектировании и использовании стальных форм в промышленности сборного железобетона. На 1 м^3 железобетона в год на металлические формы затрачивается 6—35 кг стали. Для интенсификации использования форм необходимо ускорение их оборачиваемости в технолегияеском потоке.
Освоение бетона высоких марок — еще один важный резерв снижения расхода металла при производстве железобетона. Повышение марки бетона на одну ступень снижает расход стали примерно на 50 кг/м^3.
При изготовлении металлических конструкций эффективно применение легированных сталей, экономичных профилей металлопроката. Применение трубчатых профилей в строительных конструкциях по сравнению с уголковыми дает экономию до 30 %.
В строительстве все большее значение приобретает проблема экономного расходования лесоматериалов. Прогрессивной тенденцией является максимальное использование вместо древесины местных строительных материалов, а также арболита, фибролита, древесно-стружечных, древесно-волокнистых плит и др. На современных передовых деревообрабатывающих и лесопильных предприятиях предусматривается максимальная утилизация отходов производства. Для несущих и ограждающих конструкций особенно в условиях агрессивной среды рационально применение клееной древесины. Применение деревянных клееных конструкций в сельскохозяйственных производственных зданиях позволяет в 2—3 раза снизить расход стали и вес зданий. Существенного снижения материалоемкости можно добиться совершенствованием конструктивных решений клееных конструкций, использованием для них элементов из водостойкой фанеры. Применение фанеры позволяет сократить расход древесины на 20—40%, уменьшить потребность в клее в 1,5—2,5 раза.
РАСХОД УСЛОВНОГО ТОПЛИВА НА ПРОИЗВОДСТВО ОСНОВНЫХ ВИДОВ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ И ИЗДЕЛИЯ.
Вид материала и изделий
Расход топлива. кг (в условном исчислении на 1 т продукции)
Технология производства цемента (процесс изготовления): сырье, основные способы, оборудование
Для проведения строительных или ремонтных работ используют различные материалы, в том числе цемент разных видов и марок. Его используют для подготовки бетонных, кладочных, штукатурных растворов, для производства железобетонных изделий. Но при этом редко кто знаком с технологией производства цемента.
Состав цемента
Цементная смесь получается в результате смешивания ряда компонентов:
- Клинкера. Вещество основано на глине и известняке, используется для определения прочности материала. Производится путем обжига глины и известняка. Под воздействием высоких температур плавится, преображаясь в гранулированную фракцию с высоким содержанием кремнезема. Затем обжигается повторно.
Гипса. Используется для регулирования процесса твердения цемента. Вводится в состав в количестве не более 5%.
Активных минеральных добавок. Они способствуют улучшению свойств цементного состава и расширению области его использования.
При изготовлении продукции могут быть использованы другие добавки, например, окислы кальция, магния, фосфора, соли. Но они используются в небольших количествах. Их вносят для того, чтобы получить установленные характеристики — жаропрочность, кислотоустойчивость и пр.
Если технологический процесс позволяет, то в состав могут быть введены пластификаторы.
Их использование помогает получить следующие эксплуатационные характеристики:
- Препятствовать проникновению влаги в конструкцию.
Уменьшение времени затвердевания.
Увеличение прочности.
Стойкость к колебаниям температур, влиянию агрессивных сред.
В зависимости от количества добавок выделяются несколько видов продукта:
- Портландцемент. Самая распространенная модификация, в составе которой около 80% силиката кальция. Используется при различных строительных работах. Добавление красящих веществ улучшает декоративные свойства цемента, позволяя использовать его для отделочных работ.
Глиноземистый. Отличается ускоренным твердением. Благодаря этому свойству его используют на объектах, которым необходима срочная реставрация, например, устранение разрушений после аварий, пожаров.
Магнезиальный. Основной компонент — оксид магния, добавляет составу прочности, повышает адгезию к древесине. Однако из-за повышенной склонности к коррозии используется редко.
Кислотоупорный. В процессе изготовления в состав вносится наполнитель — гидроксиликат натрия, затворяющийся жидким стеклом. Используется в кислотостойких бетонах и растворах.
Производство цемента на заводах
Выпуском цементной смеси занимаются специализированные предприятия. Чтобы получить качественный продукт требуется специальное оборудование и знание технологии. От мощности предприятия и качества сырья зависит выбор способа производства цемента.
Технологический процесс предполагает выполнение ряда производственных этапов:
- Добыча сырья, в состав которого входит гипс, глина, известняк.
Дробление известняка с приданием полученному продукту необходимой влажности.
Измельчение известняка. Смешивание его с глиной. Концентрация компонентов может меняться. Все зависит от характеристик используемого сырья. В основном соотношение составляет 3:1. В результате получается комбинированный, сухой или мокрый шлам.
Обжиг. Сырьевая масса отправляется в печь, разогретую до 1500 градусов, где спекается и превращается в гранулированную фракцию — клинкер.
Измельчение. Клинкер в специальных мельницах измельчается до порошкообразного состояния.
Подготовленные ингредиенты смешиваются в соответствии с рецептурой марки будущего цемента. В процессе смешивания добавляется гипс и специальные минеральные добавки.
Цементные составы изготавливаются по проверенным технологиям. В зависимости от состава и качества используемого сырья применяются разные методы подготовки исходных материалов.
Сухой способ
При производстве не используется вода. Основные материалы — глина и известняк, дробятся на специальном оборудовании. Сушатся, перемалываются в муку. Смешиваются при помощи пневматического инструмента и подаются на обжиг.
Клинкер, что образовался после обжига, измельчается до установленной фракции, фасуется в подготовленную тару и перевозится на склад. Производство цемента сухим способом позволяет снижать производственные затраты. Но требует повышенной однородности основных материалов. К тому же является опасным, с точки зрения экологии.
Мокрый способ
Преимуществом данного метода изготовления цемента является возможность точно подобрать необходимый состав шлама, несмотря на неоднородность исходного сырья. Шлам при таком способе приобретает жидкую консистенцию. В нем содержится около 40% жидкости.
Прежде чем сделать конечный продукт, шлам помещается в специальные технологические бассейны для корректировки состава. Затем отправляется во вращающиеся печи для обжига.
Температура обжига превышает 1000 градусов, поэтому изготовление цемента мокрым способом требует больших энергозатрат. Но дает возможность получать продукт высокого качества.
Комбинированные способы
Технология предполагает объединение сухого и мокрого способов производства цемента. Один из них может быть взят за основу, а второй — выступать в качестве дополнения. На разных предприятиях эти способы имеют различия. Все зависит от особенностей имеющегося оборудования для производства цемента, близости к месту добычи сырья, а также от потребностей на установленные марки продукта.
Если за основу взят мокрый метод, то сырье вначале смешивается, а затем обезвоживается в специальных сушилках с фильтрами почти до сухого состояния. Только после этой процедуры отправляется в печь. Такая технология позволяет уменьшать теплозатраты, поскольку в процессе обжига почти нет испарений.
Когда в основе лежит сухой способ, в процессе гранулирования готовой смеси используется вода. В обоих случаях влажность клинкера, отправляющегося в печь, около 10-18%.
Как делают белый цемент
Белый цемент, производство которого несколько отличается от технологии выпуска серого продукта, может выпускаться как мокрым, так и сухим способом. Отличается технология тем, что исходное сырье обжигается при высокой температуре и затем быстро охлаждается водой.
Клинкер этого вида продукции складывается из минеральных добавок, известняка, гипса, соли и других компонентов. Исходное сырье готовится из карбонатной и глинистой породы: известняка, каолиновой глины, отходов обогащения, кварцевого песка.
Основным достоинством и отличительной чертой белого цемента является его белоснежность. Но его производство обходится намного дороже по сравнению с серым продуктом.
Источник