Tpc-setka.ru

ТПЦ Сетка
11 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Датчики объема для цемента

Виды датчиков-уровнемеров для определения уровня жидкости в емкостях

Чтобы автоматизировать некоторые производственные процессы, требуется контроль уровня жидкости. Подобные измерения выполняются с применением специальных уровнемеров для емкостей, которые подают сигнал при достижении определенного уровня воды. Существует несколько типов этих приспособлений.

Конструктивные особенности и принцип работы

Конструкция измерителей уровня жидкости в резервуаре определяется такими характеристиками:

  1. Функциональностью. По этому параметру все измерительные устройства этого класса классифицируют на уровнемеры и сигнализаторы уровня жидкости. Последние определяют конкретную точку наполненности емкости (максимальную и минимальную), а первые — постоянно контролируют уровень жидкости.
  2. Принципом работы. В основу этого параметра заложена акустика, оптика, магнетизм, электропроводность и так далее. От принципа действия устройства зависит область его применения.
  3. Методика измерения (бесконтактная или контактная).

Кроме того, конструктивные особенности устройства определяют тип технологической среды. Например, уровнемеры в баках с питьевой водой отличаются от приспособлений, которые предназначены для измерения наполненности резервуаров с промышленными стоками.

Разновидности датчиков

Все уровнемеры классифицируются по принципу их действия. Основные типы измерительных устройств:

  1. Поплавковый. Это самый простой вариант измерения уровня воды в баке. Конструкция поплавкового уровнемера включает в себя 2 геркона, магнит и поплавок. Когда уровень жидкости увеличивается, поплавок поднимается до первого геркона, который отключает реле двигателя. Если резервуар опустошается, поплавок опускается до второго геркона, который запускает реле и включает насос, перекачивающий жидкость из скважины. Герконовый датчик предельного уровня жидкости можно сделать своими руками. При этом он будет работать, даже если в резервуаре будет объемный слой пены.
  2. Ультразвуковой. Эта разновидность измерительных устройств применяется как для сухой, так и для жидкой среды. Ультразвуковые датчики могут иметь дискретный или аналоговый выход. То есть приспособление может постоянно контролировать уровень воды или ограничивать наполнение емкости при достижении конкретной точки. Такой уровнемер состоит из приемника, УЗ-излучателя и контроллера, отвечающего за обработку сигнала. Сигнализаторы ультразвукового типа являются беспроводными и бесконтактными, поэтому их можно устанавливать даже во взрывоопасных и агрессивных жидкостях.
  3. Электродный (кондуктометрический). Такие уровнемеры не подходят для емкостей с дистиллированной водой. Стандартная конструкция оснащена трехуровневым сигнализатором, в котором наполнение резервуара контролирует пара электродов, а третий — предназначен для аварийных ситуаций, для запуска режима активной откачки.
  4. Емкостный. С использованием таких уровнемеров можно точно идентифицировать предельное наполнение резервуара. Они подходят как для жидкостей, так и для сыпучих субстанций. Емкостные уровнемеры функционируют по такому же принципу, что и конденсаторы: измерение выполняется между пластинками чувствительного элемента. При достижении пикового значения на контроллер отсылается соответствующий сигнал. Иногда емкостные сигнализаторы работают по принципу «сухого контакта», при котором устройство срабатывает через стенку резервуара. Эти приспособления могут эффективно работать в очень обширном диапазоне температур, на их функционирование не влияет электромагнитное излучение. Такие эксплуатационные свойства расширяют область использования емкостных уровнемеров.
  5. Радарный. Эта разновидность сигнализаторов является универсальной, так как она работает с любыми видами технологических сред, включая взрывоопасные и агрессивные жидкости. При этом показания не будут изменяться под воздействием температуры и давления. Прибор излучает радиоволны в определенном частотном диапазоне. Приемник улавливает отраженный радиосигнал и определяет заполненность резервуара, руководствуясь периодом задержки сигнала. На датчик-измеритель не влияет температура и давление. Запыленность технологической среды тоже не сказывается на показаниях. Специалисты отмечают, что радарные приспособления обладают максимальной точностью, так как их погрешность не превышает 1 мм.
  6. Гидростатический. Этот тип сигнализатора позволяет измерять как текущее, так и предельное наполнение емкостей. Принцип работы гидростатического устройства базируется на измерении давления столба жидкости. Популярность таких датчиков обусловлена небольшой ценой и достаточной точностью.

Существуют и другие типы устройств, но они обладают специфичным назначением.

Правила выбора

Выбирать уровнемер для резервуаров необходимо с учетом большого количества факторов. Среди них:

  • состав воды;
  • объем емкости и материал, который был использован для ее изготовления;
  • потребность в контроле предельного и минимального уровня жидкости или мониторинг действительного состояния;
  • возможность внедрения автоматического управления в систему;
  • коммутационные возможности приспособления.

Для выбора бытовых устройств важно учитывать объем емкости, схему управления и принцип срабатывания.

Популярные модели

Современный рынок предлагает много моделей сигнализаторов. Самые популярные из них:

  1. ДЕ-1 (датчик емкостный). Чаще всего этот сигнализатор используется в агрессивных средах химической и металлургической промышленности. Он позволяет контролировать температуру и уровень сыпучих и жидких веществ. Нередко используется в установках аварийной защиты.
  2. ЭСУ-1 (электронный сигнализатор уровня). Корпус этой модели изготовлен из высококачественной стали и фторопласта. Чаще всего ЭСУ-1 устанавливают во взрывоопасных и агрессивных средах. Источник электропитания находится за пределами технологической среды. Датчик измеряет уровень нефти, спирта и воды. Блок питания выполнен из прочного алюминиевого сплава.
  3. РУ-305 (реле уровня). Этот прибор предназначен для контроля состояния жидких сред. Его корпус выполнен из особого материала и может с легкостью выдерживать температуры от -50 до +50 градусов Цельсия. Однако РУ-305 запрещается применять в агрессивных химических средах. Из недостатков этого уровнемера потребители отмечают лишь то, что он работает только в одном положении, без наклона. Измерение уровня осуществляется посредством перемещения магнита с поплавком и срабатывания герконом. Измерения имеют точность не более 5 мм.
  4. СУ-100 (сигнализатор уровня). Датчик для измерения уровня сыпучих и жидких веществ. В конструкции СУ-100 присутствует электромагнитное реле.
  5. Rosemount 5600. Этот радарный датчик уровня позволяет бесконтактно измерять любую разновидность веществ. Чтобы добиться максимально точных показаний, уровнемер необходимо правильно установить. Точность показаний устройства может ухудшаться из-за воздействия электромагнитного излучения. Корпус обладает взрывозащитной конструкцией и дисплеем, на котором отображается вся необходимая информация. Rosemount 5600 может использоваться для измерения температурных показателей в резервуаре. Чтобы в полной мере оценить возможности этого оборудования, ему необходима квалифицированная настройка с учетом диаметра трубопровода, длины уровнемера и расстояния между уровнем и опорной точкой.
Читайте так же:
Закупаем цемент для производства

Сложные модели целесообразно приобретать лишь для промышленного применения. Для бытовых целей подходят простейшие варианты уровнемеров.

Пылемеры — принцип работы, сфера применения, выбор прибора для конкретной задачи.

Пылемеры — принцип работы, сфера применения, выбор прибора для конкретной задачи.

Что такое пылемер?
Пылемер — прибор, предназначенный для измерения массовой концентрации пыли в дымовых газах топливосжигающих установок, в рабочей и жилой зонах, в атмосферном воздухе. Для каждой задачи необходимо использовать определенный вид прибора.

Методы измерения пылемеров.
На сегодняшний день существует несколько методов измерения пыли: оптический (фотометрический), гравиметрический, пьезобалансный, трибоэлектрический, радиоизотопный. Рассмотрим каждый из них:

Оптический метод измерения пыли (фотометрический и нефелометрический метод).

Оптический принцип действия заключается в измерении ослабления интенсивности светового излучения при его прохождении через запыленную среду. Концентрация частиц пыли пропорциональна значению оптической плотности, которая определяется автоматически и представляет собой отрицательный десятичный логарифм коэффициента пропускания.

Недостатки фотометрического абсорбционного метода:
— низкая чувствительность при измерении малых концентраций аэрозольных частиц (менее 30 мг/м³), а также невозможность контроля высоких концентраций (более 10…12 г/м³) вследствие практически полного поглощения светового излучения.
— высокое влияние физико-химический свойств аэрозолей на результат измерения (размерность, состав и цвет аэрозоля). Для уменьшения погрешности измерений необходимо делать калибровку прибора по конкретному типу аэрозоля или ввода поправочного коэффициента
— необходимость периодической очистки оптических элементов (оптика, отражатели и т. д.)

При измерении малых концентраций аэрозольных частиц гораздо более эффективным оказывается нефелометрический метод, основанный на регистрации прямого, бокового и обратного рассеянного светового излучения. Такой метод реализован в приборах SICK, АЭРОКОН (ООО НПО «ЭКО-ИНТЕХ»), Cassela CEL 712, Kanomax 3443 и в моделях TM-data, TM-digital, TM-F и TM-M (HUND).

Недостаток нефелометрического метода
— недостатком нефелометрического метода прямого рассеяния при контроле весовой концентрации промышленных пылевых аэрозолей с широким дисперсным составом является резкая потеря чувствительности при измерении концентраций частиц диаметром более 8…10 мкм, что существенно снижает и даже исключает возможность их применения во многих отраслях. Поэтому эти приборы применяют в основном там где выбрасываются мелкодисперсные аэрозольные частицы и на выходе рукавных фильтров газоочистных установок для контроля их эффективности.

Гравиметрический метод измерения аэрозоля (ГОСТ 17.2.4.05-83) заключается в выделении частиц из пылегазового потока с последующим осаждением их на аналитическом фильтре и осушением. По величине привеса на фильтре с учетом объема пробы определяется массовая концентрация аэрозоля. Концентрацию пыли в этом случае рассчитывают по формуле.

Достоинства гравиметрического метода
+ достоинствами данного метода является точность измерения, так как происходит прямое измерение аэрозоля и нет влияния физико-химических свойств на результаты.

Недостаток гравиметрического метода
— трудоёмкость метода
— длительность процесса
— использование дополнительного оборудования

На смену трудоёмкому гравиметрическому методу пришел новый метод пьезобалансного взвешивания осажденной пробы пыли. Данный метод был впервые реализован в пылемерах компании KANOMAX в моделях 3521 и 3522 (различия моделей 3521 и 3522 в том, что в серии 3521 в комплект поставки входит импактор PM 2.5 и 10, а в 3522 — PM 2.5, 4 и 10). Позже этот метод измерений начали осваивать и российские компании, такие как ООО «НТМ-ЗАЩИТА», и реализовали его в приборе Атмас. В комплект поставки так же как в KANOMAX 3521 входят два импактора с размерностью PM 2.5 и 10 мкм.

Читайте так же:
Производство цемента с конусные дробилка

Пьезобалансный метод измерения работы прибора заключается в периодическом отборе пробы аэрозольных частиц через импактор, который из общей массы частиц отделяет респираторные (до 10 мкм) фракции, в последующем их заряде на коронирующем электроде и затем осаждении на поверхности осадительного электрода. В качестве такого электрода используется пьезоэлемент (кварц). Отбор же пробы осуществляется внутренним насосом прибора. Кварцевый пьезоэлемент включен в цепь генератора электрических колебаний. При осаждении пыли на его поверхности изменяется вес пьезоэлемента и как следствие – частота его колебаний. Изменение частоты линейно зависит от массы осажденной на элемент пыли и является величиной измеряемой весовой концентрации аэрозоля.

Достоинства пьезобалансного метода измерения
+ быстрое выполнение измерений, нет необходимости использовать большой парк дополнительного оборудования
+ достоверность показаний прибора, физико-химические свойства не оказывают влияния на измерения
+ малые габариты измерительного инструмента (прибор, как правило, поставляется в переносном кейсе, общий вес прибора в кейсе не более 4 кг).

Недостатки пьезобалансного метода измерения
— измерение производится только в рабочей и жилой зонах
— дороговизна оборудования
— необходима бережная эксплуатация (чувствительный элемент прибора очень хрупкий, не допускаются падения, а так же профилактика прибора должна осуществляться строго по инструкции).

Трибоэлектрический метод измерения основан на измерении индуцированного заряда на изолированном измерительном электроде, располагаемом в металлическом газоходе, по которому движется пылегазовый поток. Индуцированный заряд возникает при взаимодействии движущихся аэрозольных частиц с поверхностью электрода, при этом его величина пропорциональна массовой концентрации аэрозоля в широком диапазоне измерений.

Эти приборы называют трибоэлектрическими. Их можно разделить на приборы, измеряющие постоянную составляющую трибоэлектрического сигнала, и на приборы, измеряющие переменную составляющую трибоэлектрического сигнала (электродинамический наведенный заряд). К первым относятся приборы фирм Auburn, FilterSense, Babbit и Bindicator (США), Dr. Foedich, ко вторым – электродинамические приборы серии S300 (S301/S303/S304/S305), прибор контроля рукавных фильтров Snifter фирмы Sintrol Oy (Финляндия), а также модели приборов DT, DS и DA фирмы PCME (Англия). Приборы фирмы Sintrol Oy могут выпускаться во взрывобезопасном исполнении Ex, а также при использовании возле мощных электрических агрегатов с камерой фарадея, чтобы гасить помехи, создаваемые этими установками.

Достоинства трибоэлектрического метода измерения
+ вибрация в месте установки не оказывает влияния на показания
+ не имеет узлов, которые могут загрязниться, что позволяет применять приборы длительное время в жестких условиях, а так как узлы, обрабатывающие сигналы, находятся за пределами жестких условий, делает оборудование надежным
+ в приборе нет узлов, которые вырабатывают свой ресурс с истечением времени. Приборы долговечные, за счет чего становятся простыми и дешевыми в обслуживании.

Радиоизотопный метод измерения концентрации пыли основан на свойстве радиоактивного излучения (обычно β-излучения) поглощаться частицами пыли. Массу уловленной пыли определяют по степени ослабления радиоактивного излучения при прохождении его через слой накопленной пыли.

Результаты измерения концентрации пыли радиоизотопным методом зависят в некоторой степени от химического и дисперсного состава, что обусловлено особенностью взаимодействия радиоактивного излучения с веществом и нелинейностью зависимости степени поглощения от толщины слоя поглотителя.

Сферы применения пылемеров.
Как показывает практика, сферы применения пылемеров различные и они делятся на две группы: первая это аттестация рабочих мест, вторая это промышленные выбросы производств.
Для аттестации рабочих мест используют приборы с меньшим диапазоном измерения для получения боле точных результатов. В данной сфере необходимо контролировать концентрацию пыли, так как большое количество пыли в рабочей зоне может негативно сказаться на здоровье сотрудников, работающих при таких условиях и влечет за собой ряд дыхательных заболеваний.

В последнее время все чаще большие производства начали задумываться об отходящих газах, которые они производят. Помимо экологического мониторинга с помощью стационарных газоаналитических станций, начинают контролировать и пылевые выбросы.
Самым большим источником выбросов аэрозолей в атмосферу являются компании, использующие коксовые печи. Металлургические комбинаты, заводы по производству цемента и кирпича устанавливают электрофильтры, а для отслеживания загрязнения этих фильтров используют сигнализаторы запыленности Snifter производства фирмы Sintrol Oy. Данные сигнализаторы информируют оператора о необходимости очистки или о неисправности фильтров.

Контроль заполнения бункера при помощи датчика UDS

На дворе XXI век, а в системе первичного учета сбора урожая и до сих пор действуют талоны комбайнера, которые были введенны еще в 70-х годах прошлого века. Водитель и комбайнер обмениваются ими во время выгрузки зерна, вручную отмечая величину полученного (выданного) зерна. Можно ли во времена повсеместной диджитализации обойтись без этого при сборе урожая? Далее о контроле заполнения бункера .

Отсутствие точного уровня зерна в бункере комбайна как отправная точка для воровства

Попробуем проанализировать. Несмотря на высокий уровень технологий в сельском хозяйстве, ни в одном из известных мне брендов комбайнов не фиксируется информация об уровне заполнения зерном вдоль всей высоты бункера. Обычно в комбайнах есть только два штатных мембранных датчика, которые установлены сверху. Первый фиксирует информацию, когда бункер уже почти полный (более 80%), а второй — «СТОП! Бункер переполнен».

Читайте так же:
Отбор проб для испытаний цемента

Возможной причиной отсутствия таких датчиков является то, что производители комбайнов не видят в этом смысла. А может и то, что, в отличие от жидкости (например, топлива в баке), зерно не рассыпается равномерно по всей поверхности, а при заполнении собирается горкой, соответственно при выгрузке образуется воронка. Вот именно эта особенность в зависимости от того, в какой точке измерять, приводит к погрешности почти в 20%.

Действительно, на различных культурах будет разная и погрешность, но примерно разница составит около 1 т.

Итак, для учета урожая это не совсем подходит. Кроме того, сейчас датчиками можно измерять только объем заполнения бункера, но не вес (нетто). Соответственно следует проводить еще и замеры влажности зерна. К сожалению, штатные датчики влажности, которыми могут быть оснащены комбайны, не очень точны и требуют определенных настроек. Иначе, как еще можно объяснить наличие влагомеров зерна у агрономов? Кстати, можно использовать данные из них, но это уже будет средняя влажность зерна по полю в определенный период времени (измерения).

Бункерные датчики

Прежде всего разберемся, какие есть датчики для бункеров комбайнов и по какому принципу они работают. Соответственно поделим их на следующие категории:

  • мембранный датчик – срабатывает при нажатии на мембрану. Устанавливаются почти всеми производителями комбайнов как штатные датчики. Имеют невысокую точность, соответственно чаще всего используются только для информирования комбайнера о наполненности бункера;
  • пороговий датчик – срабатывает при достижении фиксированного уровня зерна в бункере. Причем, в отличие от мембранных датчиков, срабатывание происходит не механическим способом! Также эти датчики могут использоваться для контроля уровня других сыпучих материалов, сухих минеральных удобрений и т.п.;
  • ультразвуковой датчик – предназначен для бесконтактного измерения расстояния до любой твердой поверхности. Вот как раз в этом его большое преимущество, так как уровень зерна можно измерять не только по краю бункера, но и в центре. Сейчас такое решение, по моему мнению, является оптимальным. Кроме того, в отличие от других датчиков, его монтаж проще, что значительно облегчает внедрение на наемные комбайны. Причем мембранных (или пороговых) датчиков необходимо от 5 до 10 шт. на бункер, а ультразвукового достаточно всего одного на комбайн (и два на перегрузчик).

Ультразвуковые датчики установлены на перегрузчик

Использование перечисленных датчиков позволяет контролировать уровень (объем) наполненности бункера. Конечно, больше всего краж зерна происходит именно в поле. Обычно, комбайн подруливает к краю поля (дороги) и фактически за несколько минут ссыпает часть зерна из бункера в грузовик, который подъезжает на то же время. Если на поле есть охрана, то такие ссыпания происходят в «мертвых» зонах, где-то за деревьями или в низине.

Но и с охраной не сложно договориться.

Как вариант — зерно можно просто ссыпать в лесополосу, а вечером за ним приедут . Бывает и такое, что последний бункер или не полностью ссыпают, или оставляют остатки на ночь. Утром их уже там может и не быть. Кроме того, могут, если позволяет ситуация, еще и не все поле собрать (оставить последний ряд). А затем его обмолотить ночью .

В случае, если на комбайне установлен GPS-трекер , то ссыпают на бегу на разворотах. Все зерно из бункера сразу не высыпешь, но до 1 тонны за одну попытку — можно. Поэтому здесь дополнительно необходимо еще контролировать работу шнека.

Шнек и жатка

Кроме наполненности бункера крайне важно контролировать шнек и жатку. Прежде всего по работе жатки можно точнее рассчитать обработанные гектары, а по вращению шнека — проверить места выгрузки собранного урожая. Соответственно есть датчики контроля работы жатки и вращения шнека. Самый распространенный из них — датчик скорости (контроля частоты вращения), который использует бесконтактные выключатели положения.

Читайте так же:
Хороший цемент для зубных мостов

Также сам шнек можно блокировать. Это делается с помощью RFID-считывателей и реле. Соответственно каждому водителю, который имеет разрешение вывозить зерно с поля, предоставляется RFID-карточка (идентификатор). Она передается комбайнеру перед выгрузкой бункера в зерновоз. После прохождения идентификации замыкается электрическая цепь (реле) для разрешения работы шнека.

Более сложные системы используют автономные радиометки . Приемник подключается к GPS-трекеру (на комбайне), а передатчик ID-кода закрепляется на зерновоз (или перегрузчик). Расстояние срабатывания до 10 м, а период автономной работы — несколько лет. В основном такие системы называют «свой-чужой». Причем сообщение из такой системы могут также отправляться на Telegram. Это позволяет контролировать сбор урожая дистанционно, даже из офиса.

Датчики веса

Итак, единственным работающим способом вести учет урожая пока остается взвешивания на весах. Это можно делать как на своем току (зерноскладе), так и на чужом (платно). Чем скорее собранный урожай будет взвешен (учтен), тем меньше риск краж. Иначе по дороге на элеватор его может много «рассыпаться». Кроме того, это даст вам еще возможность убедиться в том, что на элеваторе весы работают корректно. Особенно актуально, когда зерно отгружается не на свои элеваторы!

А для того, чтобы уменьшить кражи в дороге, на зерновозы устанавливают GPS-трекеры. На наемные зерновозы устанавливают переносные (портативные) GPS-трекеры , которые работают от автомобильной розетки, так называемого штекера для прижигания. Кроме того, их использование должно быть прописано в договоре на перевозку. В то же время водителям запрещают останавливаться на пути с поля на элеватор (с урожаем).

Хотя GPS-трекеры не сложно «обмануть», но лучше, чтобы они все же были установлены.

Учитывая, что современные перегрузчики уже начали обустраивать тензодатчиками веса, скорее всего можно надеяться, что они появятся и на комбайнах тоже. Пока — работают автономно (в тех перегрузчиках, с которыми сталкивался автор), а результат измерений веса отражается на дисплее и/или печатается на чек. Это создает определенные неудобства, поэтому на практике не популярно. Ставить такие датчики веса самостоятельно очень рискованно, поскольку это вмешательство в конструкцию комбайна и/или зерновоза. И практически невозможно их установить на наемный технику. Дело даже не в том, что хозяин не позволит ее разбирать. Это занимает изрядное время и ресурсы, что является довольно существенным. В случае приемлемости такого шага я бы советовал перед установкой датчиков проконсультироваться с торговым представителем по продаже этой техники и оборудования.

Искусственный интеллект и дроны

Возможно альтернативным решением станет искусственный интеллект, который на основе спутниковых снимков или снимков, сделанных с беспилотников, сможет с удовлетворительной точностью предоставить информацию об объеме урожая на поле. Зная влажность зерна, можно будет достаточно точно определить его массу. Сверка с весом на элеваторе предоставит нам расхождение. Однако не забывайте и о том, что любые инновации должны пройти определенные этапы развития, а их внедрение должно быть экономически обоснованным.

Автор Николай Пилипенко.
Оригинал статьи

Приборы измерения прочности бетона

Определить, насколько эффективно бетонная конструкция будет противостоять внешним нагрузкам, позволяют специальные приборы. С их помощью можно узнать величину прочностных показателей бетона разными способами.

Назначение

Измеритель прочности бетона используется для расчета предельных нагрузок, которые способен выдержать бетон или кирпич в определенных условиях. Для установления прочностного параметра применяются два метода:

  1. Разрушающий способ позволяет определить величину прочности путем раздавливания образцов в форме кубика, полученных из поверхности бетона, в специальном прессе.
  2. Неразрушающий метод позволяет получить этот параметр без механического разрушения.

Второй способ более популярен. Для этого применяются приборы ударного импульса, упругого отскока, ультразвуковые и с частичным разрушением.

Виды и характеристики

Портативные измерители прочности бетона позволяют точно определить соответствующий параметр с минимальными затратами времени. Существует несколько разновидностей таких механизмов, отличающихся по принципу действия. Приборы наделены определенным набором функций.

Электронные

Приборы для электронного измерения прочности отличаются:

  • высокой точностью;
  • способностью зафиксировать до 5 тысяч измерений одновременно;
  • возможностью получения сведений по заранее введенным параметрам;
  • наличием функции передачи информации на компьютер;
  • способностью сортировки данных по заданным характеристикам.

Классифицируются электронные механизмы по принципу воздействия. Основанные на отрыве упругого типа предназначены для измерения прочности образцов толщиной более 10 см. Измерители параметров по импульсу удара отличается низким процентом погрешности — 7%. Двухпараметрическая модификация передает измерения и от удара, и от отрыва. Двухцилиндровые гидропрессы компонуются специальными измерительными опорами, куда вмонтирована вся электронная система. Электронным измерителем вымеряется отрыв со скалыванием.

Читайте так же:
Как приготовить раствор белого цемента

Склерометры

Устройства для экспресс-анализа измеряют удар стального бойка о бетонную поверхность по импульсу или по величине. Склерометр используется при нехватке сведений о поверхностной прочности, для проведения измерений в условиях, неподходящих для применения других методов. Отличаются агрегаты простотой эксплуатации, высокой скоростью определения по стандартным градуировочным зависимостям. При измерении учитывается вид наполнителя, возраст изделия и условия затвердения камня. Возможна ручная настройка направления удара.

Механические

Механические процессы для измерения прочностных характеристик применяются к легким и тяжелым классам бетона. Предельные показатели устройств, работающих на этом методе, равны 5—100 МПа. Замеры осуществляются на основе показаний, полученных от:

  • величины отскока бойка ударника;
  • энергии удара;
  • размеров полученного следа от бойка.

Предел погрешности механических приборов прочности составляет 15%.

Ультразвуковые

Механизмы ультразвукового действия определяют прочностные показатели при затвердении бетона, отпускную, передаточную прочность. Процесс измерения производится по скорости распределения звуковых колебаний по поверхности бетона, определяемой способами прозвучивания сквозного — датчики располагаются с двух сторон, и плоскостного — датчики находятся с одного бока. Ультразвуковыми устройствами определяют прочность в приповерхностных слоях и в теле бетона. Также их используют при дефектоскопии, для контроля качества цементирования и определения глубины бетонирования. Скорость распространения ультразвука — 4500 м/с. Недостатком является погрешность при пересчете акустических характеристик в прочностные.

Примеры производителей

Российская компания СКБ Стройприбор — популярный производитель измерителей прочности на строительном рынке. Предлагается широкий ассортимент от торговых марок Beton Pro, ADA.

Ипс-мг4.03

Ипс-мг4.03 используется при определении прочностных показателей тяжелого и мелкозернистого бетона, керамзитобетона, шлакопемзобетона, бетонных растворов, кирпича. Принцип действия основан на получении данных от ударного импульса. С учетом условий твердения и возраста материала измеритель Ипс-мг4.03 определяет:

  • физико-механические параметры образца, включая прочностные показатели, твердость, пластичность;
  • величину неоднородности;
  • зоны низкого уплотнения.
  • возможность ввода коэффициента совпадения для сравнения с градуировочными характеристиками;
  • наличие выбора типа образца;
  • опция определения класса бетона;
  • возможность исключения ошибки измерения;
  • наличие выходов для подключения к компьютеру;
  • объемная память, вмещающая 999 участков и 15 тысяч результатов;
  • возможность ввода градуировочных характеристик вручную;
  • регулировка 100 настроек по выбору типа наполнителя, материала и возраста бетона.

Вернуться к оглавлению

Beton Pro Condtrol

Измеритель прочности бетона beton pro condtrol подходит для оперативного анализа на месте и в целях лабораторного контроля прочностных колебаний, однородности цементного состава, бетонных растворов, кирпича. Принцип действия основан на измерении ударного импульса. Преимущества работы:

  • получение высокоточных величин;
  • удобство эксплуатации;
  • повышенная энергия удара;
  • автозавод ударного механизма;
  • большое количество настроек;
  • наглядность вывода информации;
  • на результат практически не влияют возраст, состав, условия твердения бетона.

В Beto Pro CONDTROL имеется 100 связанных с прочностью градуировочных зависимостей, пять направлений удара, функция присвоения признака исследуемому образцу, память на 5 тысяч измерений с возможностью сортировки и отбраковки полученных величин, выход для подключения к компьютеру, опция постройки диаграммы среднеквадратического отклонения и вариативного коэффициента.

ОНИКС-ОС

Прибор используется для определения прочностных показателей и величин однородности легкого бетона и кирпича. Относится к классу электронных склерометров. Оникс-ОС отличается такими преимуществами:

  • двухпараметрический метод контроля прочностных показателей по ударному импульсу и отскоку, что позволяет получить максимально точные результаты;
  • легкость, компактность и эргономичность;
  • максимальная точность измерительного тракта.

В устройстве реализованы основные градуировочные характеристики с возможностью уточнения на основании коэффициента совпадения. Имеется возможность настройки требуемых параметров измерения и названия образцов. Измерения проводятся с учетом состава, условий упрочнения, карбонизации и возраста бетона. В памяти ОНИКС-ОС сохраняются все результаты измерений, сведения об образцах, вариативные коэффициенты, время и дата исследований. При этом необходимые данные с диаграммами быстро выводятся на подсвечиваемый экран. Оникс-ОС имеет опции автоотключения устройства, автоудаления устаревших данных, определения класса бетона.

NOVOTEST ИПСМ-У Т Д

Ультразвуковой агрегат производит:

  • контроль прочностных параметров бетонов, кирпича и композиционных конструкций;
  • измерение глубины пор, трещин, дефектов в бетоне;
  • контроль плотности с упругостью углеграфитов и стеклопластика;
  • определение возраста бетона.

Особенностью является возможность ручной обработки результатов, отсутствие влияния внешних факторов на точность измерения, сверхчувствительный датчик прозвучивания.

Заключение

Точность измерения прочности современными устройствами позволяет качественно производить ремонтные, строительные работы, мероприятия по укреплению бетонных конструкций.

Полученные данные с измерителей гарантируют правильность выбора дальнейших действий, определения необходимости прибавления бетону прочностных характеристик, что существенно облегчает работу строителей.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector